Orthogonal Control of Transport Channels in Boron-Embedded Acenes

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-21 DOI:10.1021/jacs.4c17477
Boyu Wang, Cheng Chen, Yani Huo, Hongyu Ju, Wanqi Sun, Xiao-Ye Wang, Chuancheng Jia, Jinying Wang, Xuefeng Guo
{"title":"Orthogonal Control of Transport Channels in Boron-Embedded Acenes","authors":"Boyu Wang, Cheng Chen, Yani Huo, Hongyu Ju, Wanqi Sun, Xiao-Ye Wang, Chuancheng Jia, Jinying Wang, Xuefeng Guo","doi":"10.1021/jacs.4c17477","DOIUrl":null,"url":null,"abstract":"Developing effective structural design strategies for regulating charge transport is a central focus in molecular electronics. The interplay between molecular symmetry and orbital distribution, facilitated by heteroatom substitution, presents opportunities for direct modulation in both resonant and off-resonance tunneling processes. In this study, scanning tunneling microscopy-break junction techniques and the first-principles calculations are employed to investigate the electronic properties of boron-embedded acenes. Compared to the parent acene, boron incorporation shifts the transport-dominating molecular orbital from a centrally localized distribution to a delocalized configuration across the orthogonal molecular backbone. This shift results in a 10-fold increase in conductance in the off-resonance region near zero bias and a 50-fold enhancement in conductance through near-resonant tunneling at high bias voltages. Notably, expanding the central acene fragment increases orbital asymmetry within molecular junctions, thereby compromising transport efficiency. However, applying a bias voltage gradually mitigates the symmetry-breaking effect, leading to through-backbone orbital distribution and a recovery in the near-resonant tunneling conductance. This orthogonal control of electronic transport channels provides a distinct strategy for the effective regulation of molecular conductance.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"14 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17477","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing effective structural design strategies for regulating charge transport is a central focus in molecular electronics. The interplay between molecular symmetry and orbital distribution, facilitated by heteroatom substitution, presents opportunities for direct modulation in both resonant and off-resonance tunneling processes. In this study, scanning tunneling microscopy-break junction techniques and the first-principles calculations are employed to investigate the electronic properties of boron-embedded acenes. Compared to the parent acene, boron incorporation shifts the transport-dominating molecular orbital from a centrally localized distribution to a delocalized configuration across the orthogonal molecular backbone. This shift results in a 10-fold increase in conductance in the off-resonance region near zero bias and a 50-fold enhancement in conductance through near-resonant tunneling at high bias voltages. Notably, expanding the central acene fragment increases orbital asymmetry within molecular junctions, thereby compromising transport efficiency. However, applying a bias voltage gradually mitigates the symmetry-breaking effect, leading to through-backbone orbital distribution and a recovery in the near-resonant tunneling conductance. This orthogonal control of electronic transport channels provides a distinct strategy for the effective regulation of molecular conductance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Analysis of the TiO2 Photoanode Process Using Intensity Modulated Photocurrent Spectroscopy and Distribution of Relaxation Times Rapid Microwave-Assisted Chemical Recycling of Poly(p-Phenylene Terephthalamide) Verdazyl-Based Radicals for High-Field Dynamic Nuclear Polarization NMR De Novo Design of Proteins That Bind Naphthalenediimides, Powerful Photooxidants with Tunable Photophysical Properties Fast and Massive Production of Aramid Nanofibers via Molecule Intercalation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1