{"title":"Public Datasets for Cloud Computing: A Comprehensive Survey","authors":"Guozhi Liu, Weiwei Lin, Haotong Zhang, Jianpeng Lin, Shaoliang Peng, Keqin Li","doi":"10.1145/3719003","DOIUrl":null,"url":null,"abstract":"Publicly available datasets are vital to researchers because they permit the testing of new algorithms under a variety of conditions and ensure the verifiability and reproducibility of scientific experiments. In cloud computing research, there is a particular dependence on obtaining load traces and network traces from real cloud computing clusters, which are used for designing energy efficiency prediction, workload analysis, and anomaly detection solutions. To address the current lack of a comprehensive overview and thorough analysis of cloud computing datasets and to gain insight into their current status and future trends, in this paper, we provide a comprehensive survey of existing publicly cloud computing datasets. Firstly, we utilize a systematic mapping approach to analyze 968 scientific papers from 6 scientific databases, resulting in the retrieval of 42 datasets related to cloud computing. Secondly, we categorize these datasets based on 11 characteristics to assist researchers in quickly finding datasets suitable for their specific needs. Thirdly, we provide detailed descriptions of each dataset to assist researchers in gaining a clearer understanding of their characteristics. Fourthly, we select 12 mainstream datasets and conduct a comprehensive analysis and comparison of their characteristics. Finally, we discuss the weaknesses of existing datasets, identify challenges, provide recommendations for long-term dataset maintenance and updates, and outline directions for the future creation of new cloud computing datasets. Related resources are available at: https://github.com/ACAT-SCUT/Awesome-CloudComputing-Datasets.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"26 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3719003","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Publicly available datasets are vital to researchers because they permit the testing of new algorithms under a variety of conditions and ensure the verifiability and reproducibility of scientific experiments. In cloud computing research, there is a particular dependence on obtaining load traces and network traces from real cloud computing clusters, which are used for designing energy efficiency prediction, workload analysis, and anomaly detection solutions. To address the current lack of a comprehensive overview and thorough analysis of cloud computing datasets and to gain insight into their current status and future trends, in this paper, we provide a comprehensive survey of existing publicly cloud computing datasets. Firstly, we utilize a systematic mapping approach to analyze 968 scientific papers from 6 scientific databases, resulting in the retrieval of 42 datasets related to cloud computing. Secondly, we categorize these datasets based on 11 characteristics to assist researchers in quickly finding datasets suitable for their specific needs. Thirdly, we provide detailed descriptions of each dataset to assist researchers in gaining a clearer understanding of their characteristics. Fourthly, we select 12 mainstream datasets and conduct a comprehensive analysis and comparison of their characteristics. Finally, we discuss the weaknesses of existing datasets, identify challenges, provide recommendations for long-term dataset maintenance and updates, and outline directions for the future creation of new cloud computing datasets. Related resources are available at: https://github.com/ACAT-SCUT/Awesome-CloudComputing-Datasets.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.