Wenyan Zhang , Weidong Tao , Yihan Wang , Chaoqun Jiang , Hangmin Guan , Yingfei Hu , Wenjie Tian , Linyun Hao
{"title":"Transforming waste into resource: Enhanced hydrogen evolution with plasma-treated carbon fiber","authors":"Wenyan Zhang , Weidong Tao , Yihan Wang , Chaoqun Jiang , Hangmin Guan , Yingfei Hu , Wenjie Tian , Linyun Hao","doi":"10.1016/j.nxener.2025.100253","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing global dependence on fossil fuels has led to significant energy crises and environmental issues, highlighting the urgent need for renewable energy sources such as hydrogen. This study presents the development of plasma-treated carbon fiber loaded with Pt (P-CF@Pt) to improve photocatalytic hydrogen evolution. The plasma treatment creates surface functional groups that enhance the hydrophilicity of the carbon fibers (CFs), promoting better dispersion in liquid reaction systems and facilitating Pt loading. This interaction between the treated CF surface and the Pt sites significantly boosts charge separation and catalytic performance, resulting in improved photovoltage, lower onset potential for proton reduction, and enhanced electron transport. The P-CF@Pt composite demonstrates better photocatalytic efficiency compared to untreated CF, achieving a 23% increase in hydrogen production. These findings underscore the promise of utilizing plasma-treated CFs in the development of cost-effective and scalable photocatalytic systems for hydrogen generation.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"8 ","pages":"Article 100253"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2500016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing global dependence on fossil fuels has led to significant energy crises and environmental issues, highlighting the urgent need for renewable energy sources such as hydrogen. This study presents the development of plasma-treated carbon fiber loaded with Pt (P-CF@Pt) to improve photocatalytic hydrogen evolution. The plasma treatment creates surface functional groups that enhance the hydrophilicity of the carbon fibers (CFs), promoting better dispersion in liquid reaction systems and facilitating Pt loading. This interaction between the treated CF surface and the Pt sites significantly boosts charge separation and catalytic performance, resulting in improved photovoltage, lower onset potential for proton reduction, and enhanced electron transport. The P-CF@Pt composite demonstrates better photocatalytic efficiency compared to untreated CF, achieving a 23% increase in hydrogen production. These findings underscore the promise of utilizing plasma-treated CFs in the development of cost-effective and scalable photocatalytic systems for hydrogen generation.