Personalized icon design model based on improved Faster-RCNN

Zhikun Wang , Jiaqian Wang
{"title":"Personalized icon design model based on improved Faster-RCNN","authors":"Zhikun Wang ,&nbsp;Jiaqian Wang","doi":"10.1016/j.sasc.2025.200193","DOIUrl":null,"url":null,"abstract":"<div><div>In the digital age, as an important element of visual communication, icons have an increasing demand for personalized design. In order to meet the personalized icon design needs of students, education, management, and design fields, a personalized icon design model based on a faster regional suggestion network is proposed. Firstly, the convolutional neural network is improved to extract the multi-attribute features of icons. The transfer learning is used to optimize model parameter sharing. Then, the improved faster region-Convolutional network model is adopted for object detection, enhancing the ability to classify and recognize icons. The designed method had a recognition accuracy of over 80% in different types of icons. Among different types of icon data, the recognition accuracy of office type icons was the worst, with a recognition accuracy of 81.3%. The recognition accuracy of traffic type icons was the highest, with a recognition accuracy of 98.3%. The model had a processing time of less than 350 ms for different types of icons, with the shortest processing time of 233 ms for social media icons. The research results indicate that the proposed model has high practicality in icon personalized design, and can provide convenient tool support for designers, students, teachers, and users in the field of education management, promoting the popularization and application of personalized icon design.</div></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"7 ","pages":"Article 200193"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772941925000110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the digital age, as an important element of visual communication, icons have an increasing demand for personalized design. In order to meet the personalized icon design needs of students, education, management, and design fields, a personalized icon design model based on a faster regional suggestion network is proposed. Firstly, the convolutional neural network is improved to extract the multi-attribute features of icons. The transfer learning is used to optimize model parameter sharing. Then, the improved faster region-Convolutional network model is adopted for object detection, enhancing the ability to classify and recognize icons. The designed method had a recognition accuracy of over 80% in different types of icons. Among different types of icon data, the recognition accuracy of office type icons was the worst, with a recognition accuracy of 81.3%. The recognition accuracy of traffic type icons was the highest, with a recognition accuracy of 98.3%. The model had a processing time of less than 350 ms for different types of icons, with the shortest processing time of 233 ms for social media icons. The research results indicate that the proposed model has high practicality in icon personalized design, and can provide convenient tool support for designers, students, teachers, and users in the field of education management, promoting the popularization and application of personalized icon design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进型 Faster-RCNN 的个性化图标设计模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Neural networks optimization via Gauss–Newton based QR factorization on SARS-CoV-2 variant classification Controllability results for multi-order impulsive neutral fuzzy functional integro-differential equations with finite delay Real-time data-driven estimation of production for point bottom sealing and cutting machines using machine learning A systematic assessment of sentiment analysis models on iraqi dialect-based texts An Enhancement of Bilateral Closed-Loop Functions in Stability Standards for Networked Control Systems with Transmission Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1