Derivation of Multi-Exponential Magnetic Resonance Relaxation Equations in Simple Pore Geometries

IF 1.1 4区 物理与天体物理 Q4 PHYSICS, ATOMIC, MOLECULAR & CHEMICAL Applied Magnetic Resonance Pub Date : 2024-12-24 DOI:10.1007/s00723-024-01729-w
Armin Afrough
{"title":"Derivation of Multi-Exponential Magnetic Resonance Relaxation Equations in Simple Pore Geometries","authors":"Armin Afrough","doi":"10.1007/s00723-024-01729-w","DOIUrl":null,"url":null,"abstract":"<div><p>The common interpretation of magnetic resonance relaxation time distribution of liquids in porous media assumes a one-to-one relationship between the pore size and the relaxation time constants. This common conviction may not be correct in many microporous materials. Each pore size may be associated with more than one peak in the NMR relaxation time distributions: a single dominant peak and also possibly one or a few minor peaks. The appearance of minor peaks is due to the non-vanishing nonground eigenvalues of the diffusion–relaxation equation. Brownstein and Tarr (Phys Rev A 19:2446, 1979) described these features, but their solutions at conditions beyond the fast-diffusion regime are not widely adopted. We provide the derivation of Brownstein–Tarr equations for multi-exponential magnetic resonance relaxation decay for liquids in simple pore geometries. General solutions are presented for planar, cylindrical, and spherical pores—as well as two limiting cases of fast and slow diffusion for each geometry. Similar solutions are also relevant to first-order dilute reactions in porous media in heterogeneous reaction–diffusion systems. We hope that the availability of these derivations helps wider adoption of more realistic interpretation of magnetic resonance relaxation in porous media in the light of the multi-exponential Brownstein–Tarr model.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"56 3","pages":"313 - 358"},"PeriodicalIF":1.1000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00723-024-01729-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Magnetic Resonance","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00723-024-01729-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, ATOMIC, MOLECULAR & CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The common interpretation of magnetic resonance relaxation time distribution of liquids in porous media assumes a one-to-one relationship between the pore size and the relaxation time constants. This common conviction may not be correct in many microporous materials. Each pore size may be associated with more than one peak in the NMR relaxation time distributions: a single dominant peak and also possibly one or a few minor peaks. The appearance of minor peaks is due to the non-vanishing nonground eigenvalues of the diffusion–relaxation equation. Brownstein and Tarr (Phys Rev A 19:2446, 1979) described these features, but their solutions at conditions beyond the fast-diffusion regime are not widely adopted. We provide the derivation of Brownstein–Tarr equations for multi-exponential magnetic resonance relaxation decay for liquids in simple pore geometries. General solutions are presented for planar, cylindrical, and spherical pores—as well as two limiting cases of fast and slow diffusion for each geometry. Similar solutions are also relevant to first-order dilute reactions in porous media in heterogeneous reaction–diffusion systems. We hope that the availability of these derivations helps wider adoption of more realistic interpretation of magnetic resonance relaxation in porous media in the light of the multi-exponential Brownstein–Tarr model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Magnetic Resonance
Applied Magnetic Resonance 物理-光谱学
CiteScore
1.90
自引率
10.00%
发文量
59
审稿时长
2.3 months
期刊介绍: Applied Magnetic Resonance provides an international forum for the application of magnetic resonance in physics, chemistry, biology, medicine, geochemistry, ecology, engineering, and related fields. The contents include articles with a strong emphasis on new applications, and on new experimental methods. Additional features include book reviews and Letters to the Editor.
期刊最新文献
Enhancing Generalization and Mitigating Overfitting in Deep Learning for Brain Cancer Diagnosis from MRI Derivation of Multi-Exponential Magnetic Resonance Relaxation Equations in Simple Pore Geometries Cryogenic W-band Electron Spin Resonance Probehead with an Integral Cryogenic Low Noise Amplifier Influence of Second-Order Effects due to Hyperfine Interaction on the Magnitude of the Larmor Frequency 14N Preface to Special Issue Celebration of 80 Years of EPR Part 2
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1