Can Hot and Cold Slabs Transport Water Into the Deep Mantle Beyond Subduction Zone Magmatism?

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2025-02-22 DOI:10.1029/2024GC011694
Julia M. Ribeiro, Jeff Ryan, Jonny Wu
{"title":"Can Hot and Cold Slabs Transport Water Into the Deep Mantle Beyond Subduction Zone Magmatism?","authors":"Julia M. Ribeiro,&nbsp;Jeff Ryan,&nbsp;Jonny Wu","doi":"10.1029/2024GC011694","DOIUrl":null,"url":null,"abstract":"<p>The slab thermal state model predicts that only cold slabs should retain some of their intra-slab water beyond subduction zones, while warmer slabs should be nearly dry past the volcanic arc front. Such predictions are yet to be fully tested, as they mostly rely on numerical modeling. To further test the slab thermal model, here we have examined slab-sensitive elemental and isotopic tracers in recently erupted basalts (&lt;5 Myr) from along and across an arc transect at end-member types of cold (NE Japan) and hot subduction zones (SW Japan and Ryukyu) and beyond (eastern China intraplate volcanism). We show that the oceanic crust and the incoming hydrated mantle from the cold subducted Pacific plate are the main water carriers beyond subduction zones. Only cold slabs may thus recycle part of their intra-slab H<sub>2</sub>O into the lower mantle. Warmer slabs are too dry past the back-arc or too short-lived to exert a first order control on deep water recycling.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC011694","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC011694","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The slab thermal state model predicts that only cold slabs should retain some of their intra-slab water beyond subduction zones, while warmer slabs should be nearly dry past the volcanic arc front. Such predictions are yet to be fully tested, as they mostly rely on numerical modeling. To further test the slab thermal model, here we have examined slab-sensitive elemental and isotopic tracers in recently erupted basalts (<5 Myr) from along and across an arc transect at end-member types of cold (NE Japan) and hot subduction zones (SW Japan and Ryukyu) and beyond (eastern China intraplate volcanism). We show that the oceanic crust and the incoming hydrated mantle from the cold subducted Pacific plate are the main water carriers beyond subduction zones. Only cold slabs may thus recycle part of their intra-slab H2O into the lower mantle. Warmer slabs are too dry past the back-arc or too short-lived to exert a first order control on deep water recycling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
Issue Information Geochemical and Thermal Constraints on the Hikurangi Subduction Zone Hydrogeologic System and Its Role in Slow Slip Thermo-Tectonic History of Archean Basement Rocks in the Aktash Tagh, Southeastern Tarim Craton: Constraints From Zircon U-Pb, Zircon and Apatite Fission-Track Dating Tellurium and Mercury in Late Cretaceous to Early Eocene Sediments as Proxies for Volcanic Activity in the Deccan and North Atlantic Large Igneous Provinces Can Hot and Cold Slabs Transport Water Into the Deep Mantle Beyond Subduction Zone Magmatism?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1