A Scalable, Web-Based Platform for Proteomics Data Processing, Result Storage and Analysis.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Journal of Proteome Research Pub Date : 2025-02-21 DOI:10.1021/acs.jproteome.4c00871
Markus Schneider, Daniel P Zolg, Patroklos Samaras, Samia Ben Fredj, Dulguun Bold, Agnes Guevende, Alexander Hogrebe, Michelle T Berger, Michael Graber, Vishal Sukumar, Lizi Mamisashvili, Igor Bronsthein, Layla Eljagh, Siegfried Gessulat, Florian Seefried, Tobias Schmidt, Martin Frejno
{"title":"A Scalable, Web-Based Platform for Proteomics Data Processing, Result Storage and Analysis.","authors":"Markus Schneider, Daniel P Zolg, Patroklos Samaras, Samia Ben Fredj, Dulguun Bold, Agnes Guevende, Alexander Hogrebe, Michelle T Berger, Michael Graber, Vishal Sukumar, Lizi Mamisashvili, Igor Bronsthein, Layla Eljagh, Siegfried Gessulat, Florian Seefried, Tobias Schmidt, Martin Frejno","doi":"10.1021/acs.jproteome.4c00871","DOIUrl":null,"url":null,"abstract":"<p><p>The exponential increase in proteomics data presents critical challenges for conventional processing workflows. These pipelines often consist of fragmented software packages, glued together using complex in-house scripts or error-prone manual workflows running on local hardware, which are costly to maintain and scale. The MSAID Platform offers a fully automated, managed proteomics data pipeline, consolidating formerly disjointed functions into unified, API-driven services that cover the entire process from raw data to biological insights. Backed by the cloud-native search algorithm CHIMERYS, as well as scalable cloud compute instances and data lakes, the platform facilitates efficient processing of large data sets, automation of processing via the command line, systematic result storage, analysis, and visualization. The data lake supports elastically growing storage and unified query capabilities, facilitating large-scale analyses and efficient reuse of previously processed data, such as aggregating longitudinally acquired studies. Users interact with the platform via a web interface, CLI client, or API, providing flexible, automated access. Readily available tools for accessing result data include browser-based interrogation and one-click visualizations for statistical analysis. The platform streamlines research processes, making advanced and automated proteomic workflows accessible to a broader range of scientists. The MSAID Platform is globally available via https://platform.msaid.io.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00871","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential increase in proteomics data presents critical challenges for conventional processing workflows. These pipelines often consist of fragmented software packages, glued together using complex in-house scripts or error-prone manual workflows running on local hardware, which are costly to maintain and scale. The MSAID Platform offers a fully automated, managed proteomics data pipeline, consolidating formerly disjointed functions into unified, API-driven services that cover the entire process from raw data to biological insights. Backed by the cloud-native search algorithm CHIMERYS, as well as scalable cloud compute instances and data lakes, the platform facilitates efficient processing of large data sets, automation of processing via the command line, systematic result storage, analysis, and visualization. The data lake supports elastically growing storage and unified query capabilities, facilitating large-scale analyses and efficient reuse of previously processed data, such as aggregating longitudinally acquired studies. Users interact with the platform via a web interface, CLI client, or API, providing flexible, automated access. Readily available tools for accessing result data include browser-based interrogation and one-click visualizations for statistical analysis. The platform streamlines research processes, making advanced and automated proteomic workflows accessible to a broader range of scientists. The MSAID Platform is globally available via https://platform.msaid.io.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
期刊最新文献
Proteomic Plasticity in the Coral Montipora capitata Gamete Bundles after Parent Thermal Bleaching. Enhancing Proteomics Quality Control: Insights from the Visualization Tool QCeltis. Heterogeneities of Site-Specific N-Glycosylation in the Hippocampus of Depression-like Behavior Models in Mice Induced by Acute Stress and Chronic Stress. Multiomics Analysis of Liver Molecular Dysregulation Leading to Nonviral-Related Hepatocellular Carcinoma Development. A Scalable, Web-Based Platform for Proteomics Data Processing, Result Storage and Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1