Identification of ferroptosis-related key genes in tuberculosis by bioinformatics methods.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY AMB Express Pub Date : 2025-02-21 DOI:10.1186/s13568-025-01839-z
Wenchuan Zhang, Dongxue Zhu, Hong Jiang, Limei Wang
{"title":"Identification of ferroptosis-related key genes in tuberculosis by bioinformatics methods.","authors":"Wenchuan Zhang, Dongxue Zhu, Hong Jiang, Limei Wang","doi":"10.1186/s13568-025-01839-z","DOIUrl":null,"url":null,"abstract":"<p><p>Tuberculosis, induced by Mycobacterium tuberculosis (Mtb), continues to pose a significant global public health challenge. Ferroptosis has emerged as a pivotal factor in tuberculosis pathogenesis, however, the mechanism has not yet been fully clarified. Therefore, the aim of this study was to hypothesize and validate potential ferroptosis-related genes in Mtb infection through bioinformatics analysis, thereby offering insights for further investigation. The mRNA microarray expression profile datasets were sourced from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were derived using GEO2R. Subsequently, the shared DEGs between the GSE174566 and GSE227851 datasets were intersected with the genes in the ferroptosis database. The ferroptosis-associated shared DEGs (Ferr-sDEGs) were validated in the GSE20050 dataset. They were subjected to PPI, Cytoscape and Friends analysis, the infiltration correlation of immune cells and qRT-PCR. A total of 11 Ferr-sDEGs were identified, and 9 genes were validated. These analyses revealed that the key Ferr-sDEGs contributed to ferroptosis during Mtb infection and these key Ferr-sDEGs were relatively independent, implying that ferroptosis may be triggered by various mechanisms. Concurrently, the infiltration and correlation analysis demonstrated that multiple types of immune cells could be activated by the key Ferr-sDEGs. Ultimately, qRT-PCR validated that the expression levels of key Ferr-sDEGs. In conclusion, ferroptosis serves a pivotal function in the pathogenesis of tuberculosis. IL1B, PTGS2, TNFAIP3, HMOX1, SOCS1, CD82, and NUPR1 may be vital genes associated with the ferroptosis induced by Mtb infection.</p>","PeriodicalId":7537,"journal":{"name":"AMB Express","volume":"15 1","pages":"31"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AMB Express","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13568-025-01839-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Tuberculosis, induced by Mycobacterium tuberculosis (Mtb), continues to pose a significant global public health challenge. Ferroptosis has emerged as a pivotal factor in tuberculosis pathogenesis, however, the mechanism has not yet been fully clarified. Therefore, the aim of this study was to hypothesize and validate potential ferroptosis-related genes in Mtb infection through bioinformatics analysis, thereby offering insights for further investigation. The mRNA microarray expression profile datasets were sourced from the Gene Expression Omnibus. The differentially expressed genes (DEGs) were derived using GEO2R. Subsequently, the shared DEGs between the GSE174566 and GSE227851 datasets were intersected with the genes in the ferroptosis database. The ferroptosis-associated shared DEGs (Ferr-sDEGs) were validated in the GSE20050 dataset. They were subjected to PPI, Cytoscape and Friends analysis, the infiltration correlation of immune cells and qRT-PCR. A total of 11 Ferr-sDEGs were identified, and 9 genes were validated. These analyses revealed that the key Ferr-sDEGs contributed to ferroptosis during Mtb infection and these key Ferr-sDEGs were relatively independent, implying that ferroptosis may be triggered by various mechanisms. Concurrently, the infiltration and correlation analysis demonstrated that multiple types of immune cells could be activated by the key Ferr-sDEGs. Ultimately, qRT-PCR validated that the expression levels of key Ferr-sDEGs. In conclusion, ferroptosis serves a pivotal function in the pathogenesis of tuberculosis. IL1B, PTGS2, TNFAIP3, HMOX1, SOCS1, CD82, and NUPR1 may be vital genes associated with the ferroptosis induced by Mtb infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
AMB Express
AMB Express BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
7.20
自引率
2.70%
发文量
141
审稿时长
13 weeks
期刊介绍: AMB Express is a high quality journal that brings together research in the area of Applied and Industrial Microbiology with a particular interest in ''White Biotechnology'' and ''Red Biotechnology''. The emphasis is on processes employing microorganisms, eukaryotic cell cultures or enzymes for the biosynthesis, transformation and degradation of compounds. This includes fine and bulk chemicals, polymeric compounds and enzymes or other proteins. Downstream processes are also considered. Integrated processes combining biochemical and chemical processes are also published.
期刊最新文献
Reprofiling lamivudine as an antibiofilm and anti-pathogenic agent against Pseudomonas aeruginosa. Staphylococcal SplA and SplB serine proteases target ubiquitin(-like) specific proteases. Identification of ferroptosis-related key genes in tuberculosis by bioinformatics methods. A 12-year surveillance study on distribution and antimicrobial resistance of gram-positive bacteria in Iran. Deciphering the Withania somnifera alkaloids potential for cure of neurodegenerative disease: an in-silico study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1