Multiple mechanisms drive linezolid resistance in clinical Enterococcus faecium isolates by increasing poxtA gene expression.

IF 3.7 3区 医学 Q2 INFECTIOUS DISEASES Journal of global antimicrobial resistance Pub Date : 2025-02-19 DOI:10.1016/j.jgar.2025.02.005
Fernando Lázaro-Perona, Paula Navarro-Carrera, Iván Bloise, Pablo Prieto-Casado, Isabel García-Pérez, Alberto Paradela, Fernando Corrales, Juana Cacho-Calvo, Jesús Mingorance
{"title":"Multiple mechanisms drive linezolid resistance in clinical Enterococcus faecium isolates by increasing poxtA gene expression.","authors":"Fernando Lázaro-Perona, Paula Navarro-Carrera, Iván Bloise, Pablo Prieto-Casado, Isabel García-Pérez, Alberto Paradela, Fernando Corrales, Juana Cacho-Calvo, Jesús Mingorance","doi":"10.1016/j.jgar.2025.02.005","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The poxtA gene is a transferable linezolid-resistance gene that encodes an ATP-binding cassette F protein that prevents linezolid from inhibiting protein synthesis. In enterococci, the presence of the poxtA gene does not consistently imply resistance to linezolid. The objective of this work was to analyze the role of the poxtA gene in linezolid susceptibility in a cohort of five poxtA<sup>+</sup> clinical isolates of Enterococcus faecium.</p><p><strong>Methods: </strong>Three of the isolates were linezolid-resistant and two were linezolid-susceptible. The genomes of all five isolates were sequenced using short and long read sequencing. The genomes were assembled to identify the location of the poxtA gene. The presence and relative amount of the PoxtA protein was determined with a proteomics approach.</p><p><strong>Results: </strong>One of the linezolid-resistant isolates harbored a deletion in the poxtA gene promoter and a mutation in the ribosomal protein L4. Another exhibited two sets of tandem repeats of the poxtA gene within the chromosome, and the third displayed an increased copy number of the plasmid carrying the poxtA gene. Proteomic analysis detected the PoxtA protein and confirmed increased expression levels in the three resistant mutants. The highest expression was seen in the promoter deletion mutant.</p><p><strong>Conclusion: </strong>The presence of the poxtA gene in clinical isolates of E. faecium does not imply resistance to linezolid, but it should be considered a significant risk factor for the development of resistance. Active molecular surveillance for intestinal poxtA gene carriers could be important to prevent dissemination.</p>","PeriodicalId":15936,"journal":{"name":"Journal of global antimicrobial resistance","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of global antimicrobial resistance","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jgar.2025.02.005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: The poxtA gene is a transferable linezolid-resistance gene that encodes an ATP-binding cassette F protein that prevents linezolid from inhibiting protein synthesis. In enterococci, the presence of the poxtA gene does not consistently imply resistance to linezolid. The objective of this work was to analyze the role of the poxtA gene in linezolid susceptibility in a cohort of five poxtA+ clinical isolates of Enterococcus faecium.

Methods: Three of the isolates were linezolid-resistant and two were linezolid-susceptible. The genomes of all five isolates were sequenced using short and long read sequencing. The genomes were assembled to identify the location of the poxtA gene. The presence and relative amount of the PoxtA protein was determined with a proteomics approach.

Results: One of the linezolid-resistant isolates harbored a deletion in the poxtA gene promoter and a mutation in the ribosomal protein L4. Another exhibited two sets of tandem repeats of the poxtA gene within the chromosome, and the third displayed an increased copy number of the plasmid carrying the poxtA gene. Proteomic analysis detected the PoxtA protein and confirmed increased expression levels in the three resistant mutants. The highest expression was seen in the promoter deletion mutant.

Conclusion: The presence of the poxtA gene in clinical isolates of E. faecium does not imply resistance to linezolid, but it should be considered a significant risk factor for the development of resistance. Active molecular surveillance for intestinal poxtA gene carriers could be important to prevent dissemination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of global antimicrobial resistance
Journal of global antimicrobial resistance INFECTIOUS DISEASES-PHARMACOLOGY & PHARMACY
CiteScore
8.70
自引率
2.20%
发文量
285
审稿时长
34 weeks
期刊介绍: The Journal of Global Antimicrobial Resistance (JGAR) is a quarterly online journal run by an international Editorial Board that focuses on the global spread of antibiotic-resistant microbes. JGAR is a dedicated journal for all professionals working in research, health care, the environment and animal infection control, aiming to track the resistance threat worldwide and provides a single voice devoted to antimicrobial resistance (AMR). Featuring peer-reviewed and up to date research articles, reviews, short notes and hot topics JGAR covers the key topics related to antibacterial, antiviral, antifungal and antiparasitic resistance.
期刊最新文献
Multiple mechanisms drive linezolid resistance in clinical Enterococcus faecium isolates by increasing poxtA gene expression. Phenotypic and in silico characterization of carbapenem-resistant Serratia marcescens clinical strains. The co-occurrence of tet(X4) and tmexCD2-toprJ2 mediated tigecycline resistance in Raoultella ornithinolytica. Genetic determinants and phenotype characteristics of heavy metal and biocide tolerance among multidrug-resistant and susceptible Gram-negative bacilli clinical isolates. Antimicrobial susceptibility and genetic diversity of Staphylococcus pseudintermedius isolated from companion animals and human clinical patients in Japan: potential zoonotic implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1