Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice.

IF 9.3 1区 医学 Q1 IMMUNOLOGY Journal of Neuroinflammation Pub Date : 2025-02-21 DOI:10.1186/s12974-025-03373-y
Yulin Liu, Guoqiang Yang, Mengnan Liu, Yuwei Zhang, Houping Xu, Maryam Mazhar
{"title":"Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice.","authors":"Yulin Liu, Guoqiang Yang, Mengnan Liu, Yuwei Zhang, Houping Xu, Maryam Mazhar","doi":"10.1186/s12974-025-03373-y","DOIUrl":null,"url":null,"abstract":"<p><p>Intracerebral hemorrhage (ICH) is a most serious type of hemorrhagic stroke with a continuously rising incidence globally, without effective cure available. The underlying mechanisms driving brain injury are complex and include inflammation, oxidative stress, glutamate excitotoxicity, membrane damage, lipid peroxidation, ferroptosis and other cellular death modes. Hematoma clearance is the key to limit brain damage and foster the recovery process. The quest for effective ICH remedies is continuing and strategically evolving with the expansion of knowledge and understanding of target mechanisms and novel lead compounds. In this study, we have investigated the effects of cinnamaldehyde after ICH as an individual treatment as well as in combination with deferoxamine. The autologous blood injection model was employed using C57BL/6 mice. Following 2 h of ICH induction, animals received IP injection once per day for three days; normal saline in ICH model group, cinnamaldehyde, deferoxamine, and combined cinnamaldehyde and deferoxamine in respective groups. Measurement of neurobehavioral scoring, markers of inflammation NFкB, TNFα, IL-1, IL6, iNOS; oxidative stress and ferroptosis GSH, TBARS, glutamate, choline containing phospholipids, GPX4, SLC7A11, SLC40A1, ACSL4; and hematoma clearance hemoglobin, haptoglobin, hemopexin, zonulin, CD163, LRP1, HO1, CD36, CD206, were investigated using ELISA, PCR, and western blot. Immunofluorescence for NeuN/SLC40A1, GFAP/GPX4, NeuN/HO1, Iba1/HO1 was also performed. We have found that cinnamaldehyde possess anti-inflammatory, antioxidant, anti-ferroptotic and hematoma limiting properties that were comparable to those obtained with deferoxamine. However, combination of cinnamaldehyde and deferoxamine demonstrated remarkable effectiveness in restoration of these parameters indicating their synergistic effect in ICH model.</p>","PeriodicalId":16577,"journal":{"name":"Journal of Neuroinflammation","volume":"22 1","pages":"45"},"PeriodicalIF":9.3000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroinflammation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12974-025-03373-y","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intracerebral hemorrhage (ICH) is a most serious type of hemorrhagic stroke with a continuously rising incidence globally, without effective cure available. The underlying mechanisms driving brain injury are complex and include inflammation, oxidative stress, glutamate excitotoxicity, membrane damage, lipid peroxidation, ferroptosis and other cellular death modes. Hematoma clearance is the key to limit brain damage and foster the recovery process. The quest for effective ICH remedies is continuing and strategically evolving with the expansion of knowledge and understanding of target mechanisms and novel lead compounds. In this study, we have investigated the effects of cinnamaldehyde after ICH as an individual treatment as well as in combination with deferoxamine. The autologous blood injection model was employed using C57BL/6 mice. Following 2 h of ICH induction, animals received IP injection once per day for three days; normal saline in ICH model group, cinnamaldehyde, deferoxamine, and combined cinnamaldehyde and deferoxamine in respective groups. Measurement of neurobehavioral scoring, markers of inflammation NFкB, TNFα, IL-1, IL6, iNOS; oxidative stress and ferroptosis GSH, TBARS, glutamate, choline containing phospholipids, GPX4, SLC7A11, SLC40A1, ACSL4; and hematoma clearance hemoglobin, haptoglobin, hemopexin, zonulin, CD163, LRP1, HO1, CD36, CD206, were investigated using ELISA, PCR, and western blot. Immunofluorescence for NeuN/SLC40A1, GFAP/GPX4, NeuN/HO1, Iba1/HO1 was also performed. We have found that cinnamaldehyde possess anti-inflammatory, antioxidant, anti-ferroptotic and hematoma limiting properties that were comparable to those obtained with deferoxamine. However, combination of cinnamaldehyde and deferoxamine demonstrated remarkable effectiveness in restoration of these parameters indicating their synergistic effect in ICH model.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroinflammation
Journal of Neuroinflammation 医学-神经科学
CiteScore
15.90
自引率
3.20%
发文量
276
审稿时长
1 months
期刊介绍: The Journal of Neuroinflammation is a peer-reviewed, open access publication that emphasizes the interaction between the immune system, particularly the innate immune system, and the nervous system. It covers various aspects, including the involvement of CNS immune mediators like microglia and astrocytes, the cytokines and chemokines they produce, and the influence of peripheral neuro-immune interactions, T cells, monocytes, complement proteins, acute phase proteins, oxidative injury, and related molecular processes. Neuroinflammation is a rapidly expanding field that has significantly enhanced our knowledge of chronic neurological diseases. It attracts researchers from diverse disciplines such as pathology, biochemistry, molecular biology, genetics, clinical medicine, and epidemiology. Substantial contributions to this field have been made through studies involving populations, patients, postmortem tissues, animal models, and in vitro systems. The Journal of Neuroinflammation consolidates research that centers around common pathogenic processes. It serves as a platform for integrative reviews and commentaries in this field.
期刊最新文献
Astroglial modulation of synaptic function in the non-demyelinated cerebellar cortex is dependent on MyD88 signaling in a model of toxic demyelination. Interferon-gamma receptor signaling regulates innate immunity during Staphylococcus aureus craniotomy infection. Cinnamaldehyde and its combination with deferoxamine ameliorate inflammation, ferroptosis and hematoma expansion after intracerebral hemorrhage in mice. Growth differentiation factor 15 aggravates sepsis-induced cognitive and memory impairments by promoting microglial inflammatory responses and phagocytosis. PARP9 exacerbates apoptosis and neuroinflammation via the PI3K pathway in the thalamus and hippocampus and cognitive decline after cortical infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1