{"title":"A review of ultra-wide-bandgap semiconductor radiation detector for high-energy particles and photons.","authors":"Wenzheng Cheng, Feiyang Zhao, Tianyi Zhang, Yongjie He, Hao Zhu","doi":"10.1088/1361-6528/adb8f2","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation detectors have gained significant attention due to their extensive applications in high-energy physics, medical diagnostics, aerospace, and nuclear radiation protection. Advances in relevant technologies have made the drawbacks of traditional semiconductor detectors, including high leakage currents and instability, increasingly apparent. Ga₂O₃, diamond, and BN represent a new generation of semiconductor materials following GaN and SiC, offering wide bandgaps of around 5 eV. These ultra-wide bandgap (UWBG) semiconductors demonstrate excellent properties, including ultra-low dark current, high breakdown fields, and superior radiation tolerance, underscoring their promising potential in radiation detection. In this review, we first discuss the materials and electrical properties of Ga₂O₃, diamond, and BN, along with the general performance metrics relevant to radiation detectors. Subsequently, the review provides a comprehensive overview of the research progress in X-ray detection, charged particle detection (e.g., α particles and carbon ions), as well as fast neutron and thermal neutron detection, focusing on aspects such as chip fabrication processes, device architectures, and testing results for radiation detectors based on these three materials.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb8f2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation detectors have gained significant attention due to their extensive applications in high-energy physics, medical diagnostics, aerospace, and nuclear radiation protection. Advances in relevant technologies have made the drawbacks of traditional semiconductor detectors, including high leakage currents and instability, increasingly apparent. Ga₂O₃, diamond, and BN represent a new generation of semiconductor materials following GaN and SiC, offering wide bandgaps of around 5 eV. These ultra-wide bandgap (UWBG) semiconductors demonstrate excellent properties, including ultra-low dark current, high breakdown fields, and superior radiation tolerance, underscoring their promising potential in radiation detection. In this review, we first discuss the materials and electrical properties of Ga₂O₃, diamond, and BN, along with the general performance metrics relevant to radiation detectors. Subsequently, the review provides a comprehensive overview of the research progress in X-ray detection, charged particle detection (e.g., α particles and carbon ions), as well as fast neutron and thermal neutron detection, focusing on aspects such as chip fabrication processes, device architectures, and testing results for radiation detectors based on these three materials.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.