{"title":"The ABCs of the H2Bs: The histone H2B sequences, variants, and modifications.","authors":"Anna J Voss, Erica Korb","doi":"10.1016/j.tig.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>Histone proteins are the building blocks of chromatin, and function by wrapping DNA into complex structures that control gene expression. Histone proteins are regulated by post-translational modifications (PTMs) and by histone variant exchange. In this review, we will provide an overview of one of these histones: H2B. We will first define the sequences of human and mouse H2B proteins and discuss potential designations for canonical H2B. We will also describe the differential functions of H2B variants compared with canonical H2B. Finally, we will summarize known H2B modifications and their functions in regulating transcription. Through review of H2B genes, proteins, variants, and modifications, we aim to highlight the importance of H2B for epigenetic and transcriptional regulation of the cell.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2025.01.003","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Histone proteins are the building blocks of chromatin, and function by wrapping DNA into complex structures that control gene expression. Histone proteins are regulated by post-translational modifications (PTMs) and by histone variant exchange. In this review, we will provide an overview of one of these histones: H2B. We will first define the sequences of human and mouse H2B proteins and discuss potential designations for canonical H2B. We will also describe the differential functions of H2B variants compared with canonical H2B. Finally, we will summarize known H2B modifications and their functions in regulating transcription. Through review of H2B genes, proteins, variants, and modifications, we aim to highlight the importance of H2B for epigenetic and transcriptional regulation of the cell.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.