首页 > 最新文献

Trends in Genetics最新文献

英文 中文
Genetic adaptations of marine invertebrates to hydrothermal vent habitats 海洋无脊椎动物对热液喷口生境的遗传适应性
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-13 DOI: 10.1016/j.tig.2024.08.004
Haibin Zhang, Yang Zhou, Zhuo Yang

Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.

与典型的深海软沉积环境相比,热液喷口是一种独特的栖息地,就像生命的绿洲。生活在这些栖息地的大多数动物都是无脊椎动物,它们已经适应了包括高温、缺氧、高硫化物、高金属浓度和黑暗在内的极端喷口环境。下一代测序技术的出现,尤其是新的omics时代的到来,使更多的研究得以关注这些无脊椎动物对喷口栖息地的分子适应性。许多与热液适应有关的基因都得到了研究。我们总结了与这些基因适应有关的研究结果,并讨论了哪些新技术可以促进未来的研究。
{"title":"Genetic adaptations of marine invertebrates to hydrothermal vent habitats","authors":"Haibin Zhang, Yang Zhou, Zhuo Yang","doi":"10.1016/j.tig.2024.08.004","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.004","url":null,"abstract":"<p>Hydrothermal vents are unique habitats like an oases of life compared with typical deep-sea, soft-sediment environments. Most animals that live in these habitats are invertebrates, and they have adapted to extreme vent environments that include high temperatures, hypoxia, high sulfide, high metal concentration, and darkness. The advent of next-generation sequencing technology, especially the coming of the new era of omics, allowed more studies to focus on the molecular adaptation of these invertebrates to vent habitats. Many genes linked to hydrothermal adaptation have been studied. We summarize the findings related to these genetic adaptations and discuss which new techniques can facilitate studies in the future.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypertranscription: the invisible hand in stem cell biology 超转录:干细胞生物学中的无形之手
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.005
Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos

Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells – self-renewal and differentiation – are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.

干细胞是生长发育和成人器官稳态的基本驱动力。干细胞的特性--自我更新和分化--对生物合成的要求很高。为了满足这种需求,干细胞和祖细胞进行高转录,即转录组的全面扩增。虽然转录组学的标准归一化方法通常会掩盖高转录,但新方法开始揭示干细胞和祖细胞中全球转录输出的显著范围。我们讨论了探测全局转录变化的技术进展,回顾了有助于确定干细胞高转录特征的最新发现,并提出了这一领域的未来方向。
{"title":"Hypertranscription: the invisible hand in stem cell biology","authors":"Yun-Kyo Kim, Evelyne Collignon, S. Bryn Martin, Miguel Ramalho-Santos","doi":"10.1016/j.tig.2024.08.005","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.005","url":null,"abstract":"<p>Stem cells are the fundamental drivers of growth during development and adult organ homeostasis. The properties that define stem cells – self-renewal and differentiation – are highly biosynthetically demanding. In order to fuel this demand, stem and progenitor cells engage in hypertranscription, a global amplification of the transcriptome. While standard normalization methods in transcriptomics typically mask hypertranscription, new approaches are beginning to reveal a remarkable range in global transcriptional output in stem and progenitor cells. We discuss technological advancements to probe global transcriptional shifts, review recent findings that contribute to defining hallmarks of stem cell hypertranscription, and propose future directions in this field.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clonal ants reveal a potentially hidden meiotic feature 克隆蚂蚁揭示了一种潜在的隐性减数分裂特征
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.011
Hugo Darras, Qiaowei Pan

Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by Lacy et al. identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.

减数分裂对真核生物的繁殖至关重要,是孟德尔分离定律的基础。Lacy 等人最近的一项研究发现,克隆蚂蚁的减数分裂与这些规律有明显偏差,这暗示了一个可能被忽视的减数分裂特征。这一发现可能会对非克隆真核生物的重组产生更广泛的影响。
{"title":"Clonal ants reveal a potentially hidden meiotic feature","authors":"Hugo Darras, Qiaowei Pan","doi":"10.1016/j.tig.2024.08.011","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.011","url":null,"abstract":"<p>Meiosis is essential for eukaryotic reproduction and provides the basis for Mendel's segregation laws. A recent study by <span><span>Lacy <em>et al.</em></span><svg aria-label=\"Opens in new window\" focusable=\"false\" height=\"20\" viewbox=\"0 0 8 8\"><path d=\"M1.12949 2.1072V1H7V6.85795H5.89111V2.90281L0.784057 8L0 7.21635L5.11902 2.1072H1.12949Z\"></path></svg></span> identified a significant deviation from these laws in a clonal ant, hinting at a potentially overlooked meiotic feature. This discovery may have broader implications for recombination in nonclonal eukaryotes.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Achieve your research goals: a project management toolkit for graduate studies 实现研究目标:研究生项目管理工具包
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-12 DOI: 10.1016/j.tig.2024.08.003
Sheetal Modi

How we work affects what we achieve. In this piece, we provide a project management toolkit for students to apply to their research, offering a structure to set goals, manage risks, prioritize work, and make effective decisions. With good planning, students can improve outcomes and make their journey more rewarding.

我们的工作方式会影响我们的成果。在这篇文章中,我们提供了一个项目管理工具包,供学生应用于他们的研究,提供了一个设定目标、管理风险、确定工作优先次序和做出有效决策的结构。有了良好的规划,学生们就能提高成果,让他们的旅程更有价值。
{"title":"Achieve your research goals: a project management toolkit for graduate studies","authors":"Sheetal Modi","doi":"10.1016/j.tig.2024.08.003","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.003","url":null,"abstract":"<p>How we work affects what we achieve. In this piece, we provide a project management toolkit for students to apply to their research, offering a structure to set goals, manage risks, prioritize work, and make effective decisions. With good planning, students can improve outcomes and make their journey more rewarding.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subscription and Copyright Information 订阅和版权信息
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-09 DOI: 10.1016/s0168-9525(24)00191-4
No Abstract
无摘要
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s0168-9525(24)00191-4","DOIUrl":"https://doi.org/10.1016/s0168-9525(24)00191-4","url":null,"abstract":"No Abstract","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advisory Board and Contents 咨询委员会和内容
IF 11.4 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-09 DOI: 10.1016/s0168-9525(24)00188-4
No Abstract
无摘要
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s0168-9525(24)00188-4","DOIUrl":"https://doi.org/10.1016/s0168-9525(24)00188-4","url":null,"abstract":"No Abstract","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":11.4,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142198812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Honeybees' novel complementary sex-determining system: function and origin. 蜜蜂的新型互补性决定系统:功能和起源。
IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-09-03 DOI: 10.1016/j.tig.2024.08.001
Jana Seiler, Martin Beye

Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.

互补性决定基因通过涉及大量天然等位基因的 csd(互补性决定基因)杂合子与同源/半杂合子基因型调节蜜蜂(Apis mellifera)的雌性和雄性发育。这种品系特异性功能提供了一个难得的机会,让我们了解一种尚未被描述的调控机制以及导致这种机制的分子进化路径。我们回顾了最近在理解 Csd 如何识别不同与相同的蛋白质变体、这些变体如何调控下游途径和性分化以及这一机制如何进化并由进化力量塑造等方面取得的进展。最后,我们强调了尽管主要信号多种多样,但性别决定的调控原则是共同的,并证明了品系特异性突变对于描述新进化的功能非常有参考价值。
{"title":"Honeybees' novel complementary sex-determining system: function and origin.","authors":"Jana Seiler, Martin Beye","doi":"10.1016/j.tig.2024.08.001","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.001","url":null,"abstract":"<p><p>Complementary sex determination regulates female and male development in honeybees (Apis mellifera) via heterozygous versus homo-/hemizygous genotypes of the csd (complementary sex determiner) gene involving numerous naturally occurring alleles. This lineage-specific function offers a rare opportunity to understand an undescribed regulatory mechanism and the molecular evolutionary path leading to this mechanism. We reviewed recent advances in understanding how Csd recognizes different versus identical protein variants, how these variants regulate downstream pathways and sexual differentiation, and how this mechanism has evolved and been shaped by evolutionary forces. Finally, we highlighted the shared regulatory principles of sex determination despite the diversity of primary signals and demonstrated that lineage-specific mutations are very informative for characterizing newly evolved functions.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":13.6,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134472","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in lasso peptide discovery, biosynthesis, and function. 套索肽的发现、生物合成和功能方面的进展。
IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-31 DOI: 10.1016/j.tig.2024.08.002
Susanna E Barrett, Douglas A Mitchell

Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.

拉索肽是一大类序列多样的核糖体合成和翻译后修饰肽(RiPP)天然产物,其特点是具有滑结般的形状。这些独特、高度稳定的肽由细菌生产,用于各种用途。它们的稳定性和序列多样性使其有可能成为生物医学相关折叠肽的有用支架。然而,关于拉索肽的生物合成、生态功能以及在生物医学和农业应用中的多样化潜力,仍然存在许多问题。本综述将讨论有关套索肽生物合成和生物功能的新见解和未决问题。还讨论了基因组挖掘在开发发现拉索肽并使其多样化的新方法中发挥的作用。
{"title":"Advances in lasso peptide discovery, biosynthesis, and function.","authors":"Susanna E Barrett, Douglas A Mitchell","doi":"10.1016/j.tig.2024.08.002","DOIUrl":"https://doi.org/10.1016/j.tig.2024.08.002","url":null,"abstract":"<p><p>Lasso peptides are a large and sequence-diverse class of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products characterized by their slip knot-like shape. These unique, highly stable peptides are produced by bacteria for various purposes. Their stability and sequence diversity make them a potentially useful scaffold for biomedically relevant folded peptides. However, many questions remain about lasso peptide biosynthesis, ecological function, and diversification potential for biomedical and agricultural applications. This review discusses new insights and open questions about lasso peptide biosynthesis and biological function. The role that genome mining has played in the development of new methodologies for discovering and diversifying lasso peptides is also discussed.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":13.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wheat genomics: genomes, pangenomes, and beyond. 小麦基因组学:基因组、泛基因组及其他。
IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-26 DOI: 10.1016/j.tig.2024.07.004
Vijay K Tiwari, Gautam Saripalli, Parva K Sharma, Jesse Poland

There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.

迫切需要改良小麦以应对即将到来的挑战,包括生物和非生物胁迫。小麦的可持续改良需要在高产小麦栽培品种中引入新基因和等位基因。利用新方法、新工具和新技术在小麦栽培品种中鉴定和引入新基因至关重要。高质量的基因组、转录组和泛基因组为仔细研究小麦提供了必要的资源和工具,以鉴定和操作新的目标基因和等位基因。过去 5 年中,小麦基因组学取得了长足进步,产生了多个基因组、泛基因组和转录组。利用这些资源,我们可以加快作物改良进程。本综述总结了过去 5 年在小麦基因组学和性状发现方面取得的进展。
{"title":"Wheat genomics: genomes, pangenomes, and beyond.","authors":"Vijay K Tiwari, Gautam Saripalli, Parva K Sharma, Jesse Poland","doi":"10.1016/j.tig.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.004","url":null,"abstract":"<p><p>There is an urgent need to improve wheat for upcoming challenges, including biotic and abiotic stresses. Sustainable wheat improvement requires the introduction of new genes and alleles in high-yielding wheat cultivars. Using new approaches, tools, and technologies to identify and introduce new genes in wheat cultivars is critical. High-quality genomes, transcriptomes, and pangenomes provide essential resources and tools to examine wheat closely to identify and manipulate new and targeted genes and alleles. Wheat genomics has improved excellently in the past 5 years, generating multiple genomes, pangenomes, and transcriptomes. Leveraging these resources allows us to accelerate our crop improvement pipelines. This review summarizes the progress made in wheat genomics and trait discovery in the past 5 years.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":13.6,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rewards and dangers of regulatory innovation. 监管创新的回报与危险。
IF 13.6 2区 生物学 Q1 GENETICS & HEREDITY Pub Date : 2024-08-20 DOI: 10.1016/j.tig.2024.07.010
Luca Comai

Adaptive evolution often involves structural variation affecting genes or cis-regulatory changes that engender novel and favorable gain-of-function gene regulation. Such mutation could result in a favorable dominant trait. At the same time, the gene product could be dosage sensitive if its change in concentration disrupts another trait. As a result, the mutant allele would display dosage-sensitive pleiotropy (DSP). By minimizing imbalance while conserving the favorable dominant effect, heterozygosity can increase fitness and result in heterosis. The properties of these alleles are consistent with evidence from multiple studies that indicate increased fitness of heterozygous regulatory mutations. DSP can help explain mysterious properties of heterosis as well as other effects of hybridization.

适应性进化往往涉及影响基因的结构变异或顺式调控变化,从而产生新的和有利的功能增益基因调控。这种变异可能会产生有利的显性性状。与此同时,如果基因浓度的变化破坏了另一个性状,那么基因产物可能对剂量敏感。因此,突变等位基因会表现出剂量敏感多效性(DSP)。通过最大限度地减少不平衡,同时保留有利的显性效应,杂合性可以提高适应性并导致异质性。这些等位基因的特性与多项研究的证据相一致,这些研究表明杂合调控突变会提高适应性。DSP 可以帮助解释杂交的神秘特性以及杂交的其他效应。
{"title":"Rewards and dangers of regulatory innovation.","authors":"Luca Comai","doi":"10.1016/j.tig.2024.07.010","DOIUrl":"https://doi.org/10.1016/j.tig.2024.07.010","url":null,"abstract":"<p><p>Adaptive evolution often involves structural variation affecting genes or cis-regulatory changes that engender novel and favorable gain-of-function gene regulation. Such mutation could result in a favorable dominant trait. At the same time, the gene product could be dosage sensitive if its change in concentration disrupts another trait. As a result, the mutant allele would display dosage-sensitive pleiotropy (DSP). By minimizing imbalance while conserving the favorable dominant effect, heterozygosity can increase fitness and result in heterosis. The properties of these alleles are consistent with evidence from multiple studies that indicate increased fitness of heterozygous regulatory mutations. DSP can help explain mysterious properties of heterosis as well as other effects of hybridization.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":null,"pages":null},"PeriodicalIF":13.6,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Trends in Genetics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1