Accelerated Selective Electrooxidation of Ethylene Glycol and Inhibition of C–C Dissociation Facilitated by Surficial Oxidation on Hollowed PtAg Nanostructures via In Situ Dynamic Evolution

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2025-01-24 DOI:10.1021/jacsau.4c0097510.1021/jacsau.4c00975
Yuhan Li, Qingliang Liao, Peiyi Ji, Sheng Jie, Chunjie Wu, Kunyi Tong, Minghui Zhu, Chenhao Zhang* and Hui Li*, 
{"title":"Accelerated Selective Electrooxidation of Ethylene Glycol and Inhibition of C–C Dissociation Facilitated by Surficial Oxidation on Hollowed PtAg Nanostructures via In Situ Dynamic Evolution","authors":"Yuhan Li,&nbsp;Qingliang Liao,&nbsp;Peiyi Ji,&nbsp;Sheng Jie,&nbsp;Chunjie Wu,&nbsp;Kunyi Tong,&nbsp;Minghui Zhu,&nbsp;Chenhao Zhang* and Hui Li*,&nbsp;","doi":"10.1021/jacsau.4c0097510.1021/jacsau.4c00975","DOIUrl":null,"url":null,"abstract":"<p >Electro-upgrading of low-cost alcohols such as ethylene glycol is a promising and sustainable approach for the production of value-added chemicals while substituting energy-consuming OER in water splitting. However, the sluggish kinetics and possibility of C–C dissociation make the design of selective and efficient electrocatalysts challenging. Herein, we demonstrate the synthesis of a hollowed bimetallic PtAg nanostructure through an in situ dynamic evolution method that could efficiently drive the selective electrochemical ethylene glycol oxidation reaction (EGOR). The resulting mild surficial oxidation has intrinsically improved EGOR activity, exhibiting a remarkable performance toward glycolate (selectivity up to 99.2% and faradic efficiency ∼97%) at high current density with low overpotential (355 mA·cm<sup>–2</sup> at 1.0 V, 16.3 A·mg<sub>Pt</sub><sup>–1</sup>), exceeding prior outcomes. Through comprehensive operando characterization and theoretical calculations, this study systematically reveals that the in situ formation of Pt–O(H)<sub>ad</sub> is pivotal for modulating the electronic structure of surface and facilitating the selective electrooxidation and adsorption of −CH<sub>2</sub>OH. The competitive C–C dissociation pathway toward HCOO<sup>–</sup> is concurrently inhibited in comparison to Pt. An industrial-level current coupled with hydrogen production at low cell voltages was also achieved. These findings offer more in-depth mechanistic understanding of the EGOR’s reaction pathway mediated by surface environment in Pt-based electrocatalysts.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"714–726 714–726"},"PeriodicalIF":8.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00975","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electro-upgrading of low-cost alcohols such as ethylene glycol is a promising and sustainable approach for the production of value-added chemicals while substituting energy-consuming OER in water splitting. However, the sluggish kinetics and possibility of C–C dissociation make the design of selective and efficient electrocatalysts challenging. Herein, we demonstrate the synthesis of a hollowed bimetallic PtAg nanostructure through an in situ dynamic evolution method that could efficiently drive the selective electrochemical ethylene glycol oxidation reaction (EGOR). The resulting mild surficial oxidation has intrinsically improved EGOR activity, exhibiting a remarkable performance toward glycolate (selectivity up to 99.2% and faradic efficiency ∼97%) at high current density with low overpotential (355 mA·cm–2 at 1.0 V, 16.3 A·mgPt–1), exceeding prior outcomes. Through comprehensive operando characterization and theoretical calculations, this study systematically reveals that the in situ formation of Pt–O(H)ad is pivotal for modulating the electronic structure of surface and facilitating the selective electrooxidation and adsorption of −CH2OH. The competitive C–C dissociation pathway toward HCOO is concurrently inhibited in comparison to Pt. An industrial-level current coupled with hydrogen production at low cell voltages was also achieved. These findings offer more in-depth mechanistic understanding of the EGOR’s reaction pathway mediated by surface environment in Pt-based electrocatalysts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating 5 Years of the ACS Au Journal Family Celebrating 5 Years of the ACS Au Journal Family. Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1