Optical Axial Chirality Enhancement and Transfer within Aromatic Micelles upon (Co-)encapsulation

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2025-02-03 DOI:10.1021/jacsau.4c0122910.1021/jacsau.4c01229
Tomohiro Yasuda, Yoshihisa Hashimoto, Yuya Tanaka*, Daiki Tauchi, Masashi Hasegawa, Yusuke Kurita, Hidetoshi Kawai, Yoshitaka Tsuchido* and Michito Yoshizawa*, 
{"title":"Optical Axial Chirality Enhancement and Transfer within Aromatic Micelles upon (Co-)encapsulation","authors":"Tomohiro Yasuda,&nbsp;Yoshihisa Hashimoto,&nbsp;Yuya Tanaka*,&nbsp;Daiki Tauchi,&nbsp;Masashi Hasegawa,&nbsp;Yusuke Kurita,&nbsp;Hidetoshi Kawai,&nbsp;Yoshitaka Tsuchido* and Michito Yoshizawa*,&nbsp;","doi":"10.1021/jacsau.4c0122910.1021/jacsau.4c01229","DOIUrl":null,"url":null,"abstract":"<p >Axial chirality is the key physiochemical element, yet its chiroptical utilities have been largely limited to covalent synthesis and infinitely assembled systems so far. Here we report a new application of axially chiral binaphthyls for efficient, optical chirality enhancement and transfer upon noncovalent encapsulation by achiral aromatic micelles in water. The CD activities of dialkoxy binaphthyls are significantly enhanced (up to 7-fold) upon encapsulation by an anthracene-based aromatic micelle. Large emission enhancement (∼4-fold) and efficient guest-to-guest, optical chirality transfer are achieved through coencapsulation of the binaphthyls with achiral cycloparaphenylenes, in a guest-within-guest fashion, by the micelle. The observed unusual properties are derived from the tight inclusion of the chiral guests into the macrocyclic guests, efficiently generated only in the aromatic cavity. Moderate CPL can be observed from the coencapsulated macrocycles within the ternary composites. Furthermore, more than ∼4-fold enhanced guest-to-guest chiroptical transfer is demonstrated with a functionalized cycloparaphenylene through the present coencapsulation strategy.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"586–592 586–592"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c01229","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c01229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Axial chirality is the key physiochemical element, yet its chiroptical utilities have been largely limited to covalent synthesis and infinitely assembled systems so far. Here we report a new application of axially chiral binaphthyls for efficient, optical chirality enhancement and transfer upon noncovalent encapsulation by achiral aromatic micelles in water. The CD activities of dialkoxy binaphthyls are significantly enhanced (up to 7-fold) upon encapsulation by an anthracene-based aromatic micelle. Large emission enhancement (∼4-fold) and efficient guest-to-guest, optical chirality transfer are achieved through coencapsulation of the binaphthyls with achiral cycloparaphenylenes, in a guest-within-guest fashion, by the micelle. The observed unusual properties are derived from the tight inclusion of the chiral guests into the macrocyclic guests, efficiently generated only in the aromatic cavity. Moderate CPL can be observed from the coencapsulated macrocycles within the ternary composites. Furthermore, more than ∼4-fold enhanced guest-to-guest chiroptical transfer is demonstrated with a functionalized cycloparaphenylene through the present coencapsulation strategy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating 5 Years of the ACS Au Journal Family Celebrating 5 Years of the ACS Au Journal Family. Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1