Surface Modification of Polyesters Using Biosourced Soil-Release Polymers

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2025-02-05 DOI:10.1021/jacsau.4c0090810.1021/jacsau.4c00908
Matthieu Starck, Emanuella F. Fiandra, Josephine Binks, Gang Si, Ruth Chilton, Mark Sivik, Richard L. Thompson, Jing Li, Mark R. Wilson and Clare S. Mahon*, 
{"title":"Surface Modification of Polyesters Using Biosourced Soil-Release Polymers","authors":"Matthieu Starck,&nbsp;Emanuella F. Fiandra,&nbsp;Josephine Binks,&nbsp;Gang Si,&nbsp;Ruth Chilton,&nbsp;Mark Sivik,&nbsp;Richard L. Thompson,&nbsp;Jing Li,&nbsp;Mark R. Wilson and Clare S. Mahon*,&nbsp;","doi":"10.1021/jacsau.4c0090810.1021/jacsau.4c00908","DOIUrl":null,"url":null,"abstract":"<p >Soil-release polymers (SRPs) are important components of fabric care formulations, performing important roles in the cleaning of synthetic fabrics. SRPs modify the surface of textiles and render materials resistant to staining, while offering environmental benefits by enabling effective cleaning using shorter, cooler wash cycles. Most SRPs used in formulations contain petroleum-sourced terephthalic acid, limiting the environmental benefits presented by the use of these key additives. Here, we have prepared SRPs using a selection of pyridine dicarboxylate monomers that can be accessed from biomass and assessed their ability to modify polyester surfaces. Interestingly, a wide range of surface deposition behavior was observed, with soil-release performance significantly impacted by the pyridine dicarboxylate component in use. The performance of polymers containing 2,5-pyridine dicarboxylate units exceeded or was comparable to that of current industry-standard SRPs, while polymers constructed using 2,4- or 2,6-pyridine dicarboxylate units displayed poor performance. Through a range of studies including dynamic light scattering, contact angle analysis, scanning electron microscopy, and molecular modeling we have explored the solution and interfacial behavior of SRPs and propose the observed changes in performance to arise from a combination of differences in solution self-assembly and variation in affinities for polyester surfaces. Our work highlights the potential of using biosourced starting materials in the replacement of petroleum-derived polymers within formulated consumer products and presents a rationale for the design of SRPs.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 2","pages":"666–674 666–674"},"PeriodicalIF":8.5000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00908","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil-release polymers (SRPs) are important components of fabric care formulations, performing important roles in the cleaning of synthetic fabrics. SRPs modify the surface of textiles and render materials resistant to staining, while offering environmental benefits by enabling effective cleaning using shorter, cooler wash cycles. Most SRPs used in formulations contain petroleum-sourced terephthalic acid, limiting the environmental benefits presented by the use of these key additives. Here, we have prepared SRPs using a selection of pyridine dicarboxylate monomers that can be accessed from biomass and assessed their ability to modify polyester surfaces. Interestingly, a wide range of surface deposition behavior was observed, with soil-release performance significantly impacted by the pyridine dicarboxylate component in use. The performance of polymers containing 2,5-pyridine dicarboxylate units exceeded or was comparable to that of current industry-standard SRPs, while polymers constructed using 2,4- or 2,6-pyridine dicarboxylate units displayed poor performance. Through a range of studies including dynamic light scattering, contact angle analysis, scanning electron microscopy, and molecular modeling we have explored the solution and interfacial behavior of SRPs and propose the observed changes in performance to arise from a combination of differences in solution self-assembly and variation in affinities for polyester surfaces. Our work highlights the potential of using biosourced starting materials in the replacement of petroleum-derived polymers within formulated consumer products and presents a rationale for the design of SRPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Celebrating 5 Years of the ACS Au Journal Family Celebrating 5 Years of the ACS Au Journal Family. Engineering Dehalogenase Enzymes Using Variational Autoencoder-Generated Latent Spaces and Microfluidics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1