Ultra-high temperature ceramic (HfC) reinforcement of laser powder-directed energy deposited inconel 718: Microstructural evolution and tensile properties at room and high temperatures
Wonjong Jeong , Joowon Suh , Suk Hoon Kang , Yejin Kang , Minseok Lee , Taegyu Lee , Kang Taek Lee , Ho Jin Ryu
{"title":"Ultra-high temperature ceramic (HfC) reinforcement of laser powder-directed energy deposited inconel 718: Microstructural evolution and tensile properties at room and high temperatures","authors":"Wonjong Jeong , Joowon Suh , Suk Hoon Kang , Yejin Kang , Minseok Lee , Taegyu Lee , Kang Taek Lee , Ho Jin Ryu","doi":"10.1016/j.compositesb.2025.112281","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the influence of ultra-high-temperature ceramic (UHTC) hafnium carbide (HfC) reinforcement on the microstructural evolution and mechanical properties of Inconel 718 produced by laser powder directed energy deposition (LP-DED). Inconel 718 powder was uniformly coated with HfC particles (HfCp) via the surface modification and reinforcement transplantation (SMART) process. The introduction of HfCp, which accumulated at the melt pool surface during LP-DED, significantly enhanced the laser beam absorptivity, inducing localized heating that resulted in the dissolution of HfC and the formation of secondary phases, such as Ni<sub>5</sub>Hf, (Hf,Nb,Ti)C, and Hf-enriched Laves phases. These secondary phases, causing Nb depletion, contributed to grain refinement, stabilized the microstructure, and promoted the formation of γ′/γ′′ co-precipitates. Mechanical testing revealed that at 650 °C, Inconel 718 samples reinforced with 1.5 vol% and 3.0 vol% HfC demonstrated superior tensile strength and elongation compared to the unreinforced sample, with no observed serration behavior. The secondary phases enhanced the dislocation density and strain-hardening behavior, while acting as diffusion barriers to prevent oxidation-induced intergranular cracking, whereas Hf and C specifically stabilized the grain boundaries, further enhancing the oxidation resistance at elevated temperatures. These results emphasize the importance of reinforcing the laser beam absorptivity during the fabrication of high-performance composites by LP-DED and confirm that HfC-reinforced Inconel 718 has great potential for high-temperature applications.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"297 ","pages":"Article 112281"},"PeriodicalIF":12.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825001714","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the influence of ultra-high-temperature ceramic (UHTC) hafnium carbide (HfC) reinforcement on the microstructural evolution and mechanical properties of Inconel 718 produced by laser powder directed energy deposition (LP-DED). Inconel 718 powder was uniformly coated with HfC particles (HfCp) via the surface modification and reinforcement transplantation (SMART) process. The introduction of HfCp, which accumulated at the melt pool surface during LP-DED, significantly enhanced the laser beam absorptivity, inducing localized heating that resulted in the dissolution of HfC and the formation of secondary phases, such as Ni5Hf, (Hf,Nb,Ti)C, and Hf-enriched Laves phases. These secondary phases, causing Nb depletion, contributed to grain refinement, stabilized the microstructure, and promoted the formation of γ′/γ′′ co-precipitates. Mechanical testing revealed that at 650 °C, Inconel 718 samples reinforced with 1.5 vol% and 3.0 vol% HfC demonstrated superior tensile strength and elongation compared to the unreinforced sample, with no observed serration behavior. The secondary phases enhanced the dislocation density and strain-hardening behavior, while acting as diffusion barriers to prevent oxidation-induced intergranular cracking, whereas Hf and C specifically stabilized the grain boundaries, further enhancing the oxidation resistance at elevated temperatures. These results emphasize the importance of reinforcing the laser beam absorptivity during the fabrication of high-performance composites by LP-DED and confirm that HfC-reinforced Inconel 718 has great potential for high-temperature applications.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.