Thermal management of through-silicon vias and back-end-of-line layers in 3D ICs: A comprehensive review

IF 2.6 4区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Microelectronic Engineering Pub Date : 2025-02-20 DOI:10.1016/j.mee.2025.112325
Hongbang Zhang , Miao Tian , Xiaokun Gu
{"title":"Thermal management of through-silicon vias and back-end-of-line layers in 3D ICs: A comprehensive review","authors":"Hongbang Zhang ,&nbsp;Miao Tian ,&nbsp;Xiaokun Gu","doi":"10.1016/j.mee.2025.112325","DOIUrl":null,"url":null,"abstract":"<div><div>Three-dimensional integrated circuits (3D ICs) have emerged at the forefront of semiconductor research due to their potential for enhancing performance and reducing power consumption. As semiconductor technology advances, the continuous miniaturization and increasing integration density of 3D ICs have made size and interface effects more pronounced, leading to higher heat flux densities and more complex thermal management challenges. Through‑silicon via (TSV) and back-end-of-line (BEOL) structures, as core components of 3D ICs, are responsible for horizontal and vertical interconnections and directly affect the thermal transport performance within the chip. In this review, we provide an overview of the current state of thermal management in TSVs and BEOL structures, discussing heat dissipation performance, thermal parameter extraction, structural optimization, and the development of layout algorithms. In response to the challenges of cross-scale simulations and the difficulty of characterizing the thermal properties and temperature distribution of complex micro-nano scale structures, the current state of theoretical calculations and thermal testing techniques at the micro-nano scale, which have been evolved as powerful tools in thermal management of 3D ICs, is also presented. This review summarizes the key advances and challenges in this field, highlighting the importance of addressing these issues to optimize TSVs and BEOL designs and enhance the thermal management performance of 3D ICs, providing valuable reference and guidance for future research.</div></div>","PeriodicalId":18557,"journal":{"name":"Microelectronic Engineering","volume":"298 ","pages":"Article 112325"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microelectronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167931725000140","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Three-dimensional integrated circuits (3D ICs) have emerged at the forefront of semiconductor research due to their potential for enhancing performance and reducing power consumption. As semiconductor technology advances, the continuous miniaturization and increasing integration density of 3D ICs have made size and interface effects more pronounced, leading to higher heat flux densities and more complex thermal management challenges. Through‑silicon via (TSV) and back-end-of-line (BEOL) structures, as core components of 3D ICs, are responsible for horizontal and vertical interconnections and directly affect the thermal transport performance within the chip. In this review, we provide an overview of the current state of thermal management in TSVs and BEOL structures, discussing heat dissipation performance, thermal parameter extraction, structural optimization, and the development of layout algorithms. In response to the challenges of cross-scale simulations and the difficulty of characterizing the thermal properties and temperature distribution of complex micro-nano scale structures, the current state of theoretical calculations and thermal testing techniques at the micro-nano scale, which have been evolved as powerful tools in thermal management of 3D ICs, is also presented. This review summarizes the key advances and challenges in this field, highlighting the importance of addressing these issues to optimize TSVs and BEOL designs and enhance the thermal management performance of 3D ICs, providing valuable reference and guidance for future research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Microelectronic Engineering
Microelectronic Engineering 工程技术-工程:电子与电气
CiteScore
5.30
自引率
4.30%
发文量
131
审稿时长
29 days
期刊介绍: Microelectronic Engineering is the premier nanoprocessing, and nanotechnology journal focusing on fabrication of electronic, photonic, bioelectronic, electromechanic and fluidic devices and systems, and their applications in the broad areas of electronics, photonics, energy, life sciences, and environment. It covers also the expanding interdisciplinary field of "more than Moore" and "beyond Moore" integrated nanoelectronics / photonics and micro-/nano-/bio-systems. Through its unique mixture of peer-reviewed articles, reviews, accelerated publications, short and Technical notes, and the latest research news on key developments, Microelectronic Engineering provides comprehensive coverage of this exciting, interdisciplinary and dynamic new field for researchers in academia and professionals in industry.
期刊最新文献
Thermal management of through-silicon vias and back-end-of-line layers in 3D ICs: A comprehensive review Optimization of read operation for low power consumption in 3D NAND flash memory Optimization of edge bead removal (EBR) process to enhance defect reduction in optical lithography Neural network for in-sensor time series recognition based on optoelectronic memristor Optimization of pattern quality in DMD scanning maskless lithography: A parametric study of the OS3L exposure algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1