GLAAM and GLAAI: Pioneering attention models for robust automated cataract detection

Deepak Kumar , Chaman Verma , Zoltán Illés
{"title":"GLAAM and GLAAI: Pioneering attention models for robust automated cataract detection","authors":"Deepak Kumar ,&nbsp;Chaman Verma ,&nbsp;Zoltán Illés","doi":"10.1016/j.cmpbup.2025.100182","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Early detection of eye diseases, especially cataracts, is essential for preventing vision impairment. Accurate and cost-effective cataract diagnosis often requires advanced methods. This study proposes novel deep learning models that integrate global and local attention mechanisms into MobileNet and InceptionV3 architectures to improve cataract detection from fundus images.</div></div><div><h3>Methods:</h3><div>Two deep learning models, Global–Local Attention Augmented MobileNet (GLAAM) and Global–Local Attention Augmented InceptionV3 (GLAAI), were developed to enhance the analysis of fundus images. The models incorporate a combined attention mechanism to effectively capture deteriorated regions in retinal images. Data augmentation techniques were employed to prevent overfitting during training and testing on two cataract datasets. Additionally, Grad-CAM visualizations were used to increase interpretability by highlighting key regions influencing predictions.</div></div><div><h3>Results:</h3><div>The GLAAM model achieved a balanced accuracy of 97.08%, an average precision of 97.11%, and an F1-score of 97.12% on the retinal dataset. Grad-CAM visualizations confirmed the models’ ability to identify crucial cataract-related regions in fundus images.</div></div><div><h3>Conclusion:</h3><div>This study demonstrates a significant advancement in cataract diagnosis using deep learning, with GLAAM and GLAAI models exhibiting strong diagnostic performance. These models have the potential to enhance diagnostic tools and improve patient care by offering a cost-effective and accurate solution for cataract detection, suitable for integration into clinical settings.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100182"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990025000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objective:

Early detection of eye diseases, especially cataracts, is essential for preventing vision impairment. Accurate and cost-effective cataract diagnosis often requires advanced methods. This study proposes novel deep learning models that integrate global and local attention mechanisms into MobileNet and InceptionV3 architectures to improve cataract detection from fundus images.

Methods:

Two deep learning models, Global–Local Attention Augmented MobileNet (GLAAM) and Global–Local Attention Augmented InceptionV3 (GLAAI), were developed to enhance the analysis of fundus images. The models incorporate a combined attention mechanism to effectively capture deteriorated regions in retinal images. Data augmentation techniques were employed to prevent overfitting during training and testing on two cataract datasets. Additionally, Grad-CAM visualizations were used to increase interpretability by highlighting key regions influencing predictions.

Results:

The GLAAM model achieved a balanced accuracy of 97.08%, an average precision of 97.11%, and an F1-score of 97.12% on the retinal dataset. Grad-CAM visualizations confirmed the models’ ability to identify crucial cataract-related regions in fundus images.

Conclusion:

This study demonstrates a significant advancement in cataract diagnosis using deep learning, with GLAAM and GLAAI models exhibiting strong diagnostic performance. These models have the potential to enhance diagnostic tools and improve patient care by offering a cost-effective and accurate solution for cataract detection, suitable for integration into clinical settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GLAAM和GLAAI:用于稳健自动白内障检测的开创性注意力模型
背景和目的:早期发现眼疾,尤其是白内障,对于预防视力损伤至关重要。准确且经济高效的白内障诊断通常需要先进的方法。本研究提出了新颖的深度学习模型,将全局和局部注意力机制整合到 MobileNet 和 InceptionV3 架构中,以改进眼底图像的白内障检测。这些模型结合了联合注意力机制,可有效捕捉视网膜图像中的恶化区域。在两个白内障数据集的训练和测试过程中,采用了数据增强技术来防止过度拟合。结果:在视网膜数据集上,GLAAM 模型的均衡准确率达到了 97.08%,平均精确率达到了 97.11%,F1 分数达到了 97.12%。Grad-CAM 可视化证实了模型识别眼底图像中关键白内障相关区域的能力。这些模型具有增强诊断工具和改善患者护理的潜力,可为白内障检测提供具有成本效益的准确解决方案,适合集成到临床环境中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Towards objective In-Vitro wound healing assessment with segment anything: A large evaluation of interactive and automated pipelines A comparative approach of analyzing data uncertainty in parameter estimation for a Lumpy Skin Disease model Feature selection based on Mahalanobis distance for early Parkinson disease classification Multiscale guided attention network for optic disc segmentation of retinal images A sustainable neuromorphic framework for disease diagnosis using digital medical imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1