A new fault detection method based on an updatable hybrid model for hard-to-detect faults in nonstationary processes

IF 9.4 1区 工程技术 Q1 ENGINEERING, INDUSTRIAL Reliability Engineering & System Safety Pub Date : 2025-02-22 DOI:10.1016/j.ress.2025.110920
Jie Dong , Daye Li , Zhiyu Cong , Kaixiang Peng
{"title":"A new fault detection method based on an updatable hybrid model for hard-to-detect faults in nonstationary processes","authors":"Jie Dong ,&nbsp;Daye Li ,&nbsp;Zhiyu Cong ,&nbsp;Kaixiang Peng","doi":"10.1016/j.ress.2025.110920","DOIUrl":null,"url":null,"abstract":"<div><div>Fault detection is an effective means to guarantee the stable operation of industrial production. Fault signals are easily masked by nonstationary trends in the variables, which leads to hard-to-detect faults in nonstationary processes. In this paper, an updatable hybrid model for fault detection is proposed for the nonstationary characteristics and hard-to-detect faults of industrial processes. First, the stationary residuals of the nonstationary variables are combined with the stationary variables to form a combined matrix. Second, a monitoring model based on slow-feature-analysis-local-outlier-factor (SFA-LOF) is constructed, which extracts the slow features in the combined matrix and introduces a local outlier factor as the monitoring index. Third, the sensitive variables of faults that are hard to detect using SFA-LOF are screened, and refined models based on Kullback–Leibler divergence are constructed for hard-to-detect faults. Then, an updatable hybrid model based on the SFA-LOF model and the refined model is proposed. The hybrid model matches the detection models to the faults and is able to update the hybrid model by developing refined models. Finally, the Tennessee Eastman process is used to validate the effectiveness of the proposed fault detection framework.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"259 ","pages":"Article 110920"},"PeriodicalIF":9.4000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025001231","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fault detection is an effective means to guarantee the stable operation of industrial production. Fault signals are easily masked by nonstationary trends in the variables, which leads to hard-to-detect faults in nonstationary processes. In this paper, an updatable hybrid model for fault detection is proposed for the nonstationary characteristics and hard-to-detect faults of industrial processes. First, the stationary residuals of the nonstationary variables are combined with the stationary variables to form a combined matrix. Second, a monitoring model based on slow-feature-analysis-local-outlier-factor (SFA-LOF) is constructed, which extracts the slow features in the combined matrix and introduces a local outlier factor as the monitoring index. Third, the sensitive variables of faults that are hard to detect using SFA-LOF are screened, and refined models based on Kullback–Leibler divergence are constructed for hard-to-detect faults. Then, an updatable hybrid model based on the SFA-LOF model and the refined model is proposed. The hybrid model matches the detection models to the faults and is able to update the hybrid model by developing refined models. Finally, the Tennessee Eastman process is used to validate the effectiveness of the proposed fault detection framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Reliability Engineering & System Safety
Reliability Engineering & System Safety 管理科学-工程:工业
CiteScore
15.20
自引率
39.50%
发文量
621
审稿时长
67 days
期刊介绍: Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.
期刊最新文献
A new fault detection method based on an updatable hybrid model for hard-to-detect faults in nonstationary processes Dual sampling method for evaluating uncertainty when updating a Bayesian estimation model of a high-speed railway bridge State space neural network with nonlinear physics for mechanical system modeling Lost capacity of the weighted k-out-of-n system with discrete component lifetimes Failure prediction of overhead transmission lines incorporating time series prediction model for wind-ice loads
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1