Alessandro Lenzi , Marco Paci , Alessandro Bettini , Antonio Caprai , Alessandro D'Ulivo , Massimo Onor , Marco Carlo Mascherpa , Beatrice Campanella
{"title":"Sampling and analysis of H2S and Hg from evaporative geothermal cooling towers: The Italian experience","authors":"Alessandro Lenzi , Marco Paci , Alessandro Bettini , Antonio Caprai , Alessandro D'Ulivo , Massimo Onor , Marco Carlo Mascherpa , Beatrice Campanella","doi":"10.1016/j.geothermics.2025.103291","DOIUrl":null,"url":null,"abstract":"<div><div>The Italian regulatory framework on geothermal power plants requires measurement of the emission of H<sub>2</sub>S and Hg from cooling towers. Sampling of emitted air in geothermal plants is a quite complex task requiring specific non-standard methods in order to collect stable and representative samples. A direct application of standard methods for H<sub>2</sub>S and Hg emissions to cooling tower is often not suitable or difficult to apply. The standard methods indeed were developed for sampling in the stacks of combustion plants such as power generation or cement production plants. The drastic difference in temperature, humidity, air flow composition and velocity and moreover geometrical difference between stacks with diameters of few meters compared to cells of cooling towers, very often over 5–9 m, required a special setup of methods for sampling and analysis. Enel Green Power and Consiglio Nazionale delle Ricerche (Italy) thus have carried out a screening of the existing methods and some of them were customized and extended for their application on cooling towers of geothermal power plants. The main results obtained provided suitable sampling and analysis methods for H<sub>2</sub>S in the range 0.2–25 mg/Nm<sup>3</sup> and for mercury between 20–500 µg/Nm<sup>3</sup>. The aforementioned sampling and analysis methods are currently adopted by EGP and by the regional agency for environmental protection (ARPAT) for the measurement of H<sub>2</sub>S and Hg emission from cooling towers of geothermal power plants in Italy.</div></div>","PeriodicalId":55095,"journal":{"name":"Geothermics","volume":"129 ","pages":"Article 103291"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geothermics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375650525000434","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The Italian regulatory framework on geothermal power plants requires measurement of the emission of H2S and Hg from cooling towers. Sampling of emitted air in geothermal plants is a quite complex task requiring specific non-standard methods in order to collect stable and representative samples. A direct application of standard methods for H2S and Hg emissions to cooling tower is often not suitable or difficult to apply. The standard methods indeed were developed for sampling in the stacks of combustion plants such as power generation or cement production plants. The drastic difference in temperature, humidity, air flow composition and velocity and moreover geometrical difference between stacks with diameters of few meters compared to cells of cooling towers, very often over 5–9 m, required a special setup of methods for sampling and analysis. Enel Green Power and Consiglio Nazionale delle Ricerche (Italy) thus have carried out a screening of the existing methods and some of them were customized and extended for their application on cooling towers of geothermal power plants. The main results obtained provided suitable sampling and analysis methods for H2S in the range 0.2–25 mg/Nm3 and for mercury between 20–500 µg/Nm3. The aforementioned sampling and analysis methods are currently adopted by EGP and by the regional agency for environmental protection (ARPAT) for the measurement of H2S and Hg emission from cooling towers of geothermal power plants in Italy.
期刊介绍:
Geothermics is an international journal devoted to the research and development of geothermal energy. The International Board of Editors of Geothermics, which comprises specialists in the various aspects of geothermal resources, exploration and development, guarantees the balanced, comprehensive view of scientific and technological developments in this promising energy field.
It promulgates the state of the art and science of geothermal energy, its exploration and exploitation through a regular exchange of information from all parts of the world. The journal publishes articles dealing with the theory, exploration techniques and all aspects of the utilization of geothermal resources. Geothermics serves as the scientific house, or exchange medium, through which the growing community of geothermal specialists can provide and receive information.