Estimating leaf and canopy nitrogen contents in major field crops across the growing season from hyperspectral images using nonparametric regression

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Computers and Electronics in Agriculture Pub Date : 2025-02-24 DOI:10.1016/j.compag.2025.110147
Dong Wang , Paul C. Struik , Lei Liang , Xinyou Yin
{"title":"Estimating leaf and canopy nitrogen contents in major field crops across the growing season from hyperspectral images using nonparametric regression","authors":"Dong Wang ,&nbsp;Paul C. Struik ,&nbsp;Lei Liang ,&nbsp;Xinyou Yin","doi":"10.1016/j.compag.2025.110147","DOIUrl":null,"url":null,"abstract":"<div><div>Estimating leaf nitrogen (N) status is crucial for site- and time-specific crop N management, and can be accomplished more routinely than ever before with the advent of hyperspectral imaging techniques. Yet, there is still a lack of information about how leaf and canopy N of major crops could be predicted from different regression methods, hyperspectral feature types, and prediction pathways. We conducted field experiments with different N supply for rice, wheat and maize, in China. Features of canopy reflectance (Ref), vegetation indices (VIs), and texture information (Tex) were extracted from acquired hyperspectral images. These features and crop developmental stage (DS) were applied to estimate crop N parameters, using five nonparametric regression algorithms: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest Regression, Deep Neural Network, and Convolutional Neural Network. The performance of PLSR and SVR models was significantly better than that of the others when field samples were limited. Use of feature combination in leaf N prediction was identified necessary from the improved model performance after incorporating the features of Ref, Tex, and DS. The prediction of the mass-based leaf N trait, leaf N concentration, was better than that of the area-based trait, specific leaf N (SLN). Values of SLN and canopy leaf-N content were predicted comparably via themselves direct and indirect methods, although indirect procedures involved more steps requiring the prediction of two or more component traits. These results were discussed in view of making use of available regression-models, features and pathways for best predictabilities so as to improve crop N monitoring for sustainable field N management.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"233 ","pages":"Article 110147"},"PeriodicalIF":7.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925002534","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating leaf nitrogen (N) status is crucial for site- and time-specific crop N management, and can be accomplished more routinely than ever before with the advent of hyperspectral imaging techniques. Yet, there is still a lack of information about how leaf and canopy N of major crops could be predicted from different regression methods, hyperspectral feature types, and prediction pathways. We conducted field experiments with different N supply for rice, wheat and maize, in China. Features of canopy reflectance (Ref), vegetation indices (VIs), and texture information (Tex) were extracted from acquired hyperspectral images. These features and crop developmental stage (DS) were applied to estimate crop N parameters, using five nonparametric regression algorithms: Partial Least Squares Regression (PLSR), Support Vector Regression (SVR), Random Forest Regression, Deep Neural Network, and Convolutional Neural Network. The performance of PLSR and SVR models was significantly better than that of the others when field samples were limited. Use of feature combination in leaf N prediction was identified necessary from the improved model performance after incorporating the features of Ref, Tex, and DS. The prediction of the mass-based leaf N trait, leaf N concentration, was better than that of the area-based trait, specific leaf N (SLN). Values of SLN and canopy leaf-N content were predicted comparably via themselves direct and indirect methods, although indirect procedures involved more steps requiring the prediction of two or more component traits. These results were discussed in view of making use of available regression-models, features and pathways for best predictabilities so as to improve crop N monitoring for sustainable field N management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
期刊最新文献
Diffusion model-based image generative method for quality monitoring of direct grain harvesting Introduction risk assessment for quarantine pests by environmental monitoring, object detection and Monte Carlo simulation Towards improved harmful algal bloom forecasts: A comparison of symbolic regression with DoME and stream learning performance Fast prediction of odor concentration along pig manure chain based on machine learning: Monitoring 20 instead of over 100 odorous substances An Efficient Multi-Scale Attention two-stream inflated 3D ConvNet network for cattle behavior recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1