Genomics and biodegradation properties of an oleophilic bacterium isolated from shale oil sludge

IF 4.1 2区 环境科学与生态学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY International Biodeterioration & Biodegradation Pub Date : 2025-02-24 DOI:10.1016/j.ibiod.2025.106028
Shuang Deng , Changfu Cai , Junwei Wang , Da Qin , Liyun Yu , Jiabin Wang , Shuang Dai , Jialin Fan , Chunlong Zhang , Liyang Li , Wei Song , Xilin Hou
{"title":"Genomics and biodegradation properties of an oleophilic bacterium isolated from shale oil sludge","authors":"Shuang Deng ,&nbsp;Changfu Cai ,&nbsp;Junwei Wang ,&nbsp;Da Qin ,&nbsp;Liyun Yu ,&nbsp;Jiabin Wang ,&nbsp;Shuang Dai ,&nbsp;Jialin Fan ,&nbsp;Chunlong Zhang ,&nbsp;Liyang Li ,&nbsp;Wei Song ,&nbsp;Xilin Hou","doi":"10.1016/j.ibiod.2025.106028","DOIUrl":null,"url":null,"abstract":"<div><div>Shale oil exploitation is accompanied with the generation of a large quantity of oily sludge. In order to provide suitable microbial resources for treating the growing amount of oily sludge, a microbial strain was isolated and purified from the sewage sludge produced in Daqing shale oil field in this study. The isolated strain in the sludge, temporarily termed FM-1, was identified by morphological, biochemical experiments and 16S rDNA sequencing. At the same time, the protein coding genes of the strain FM-1 were classified by genome-wide sequencing and analyzed its genetic characteristics. The degradation effect of FM-1 was detected to C<sub>12</sub>, C<sub>17</sub> and crude oil and sludge samples by gas chromatography and spectrophotometer. The results confirmed that FM-1 was <em>Bacillus proteolyticus</em>. The whole genome sequencing data analysis showed that there were 1495 protein coding genes related to metabolism, including 384 genes for carbohydrate metabolism. All the genes related to the degradation function, such as <em>almA, mdhA, CYPs, ladA, catD, catE</em> and <em>fadE,</em> were enriched in the oxidative phosphorylation signaling pathway, indicating that FM-1 had abundant genes associated with petroleum hydrocarbon degradation. The strain FM-1 could utilize C<sub>10</sub>-C<sub>40</sub> petroleum hydrocarbons as the sole carbon source, and the degradation rate of crude oil was 17.5% in seven days under the experimental conditions. The degradation rate for petroleum hydrocarbon pollutants in shale oil sludge was as high as 91.5% in 28 days. Literature and patent searches found that <em>Bacillus proteolyticus</em> was a kind of new efficient petroleum hydrocarbon degrading bacterium, which had been obtained the Chinese invention patent.</div></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":"200 ","pages":"Article 106028"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830525000320","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Shale oil exploitation is accompanied with the generation of a large quantity of oily sludge. In order to provide suitable microbial resources for treating the growing amount of oily sludge, a microbial strain was isolated and purified from the sewage sludge produced in Daqing shale oil field in this study. The isolated strain in the sludge, temporarily termed FM-1, was identified by morphological, biochemical experiments and 16S rDNA sequencing. At the same time, the protein coding genes of the strain FM-1 were classified by genome-wide sequencing and analyzed its genetic characteristics. The degradation effect of FM-1 was detected to C12, C17 and crude oil and sludge samples by gas chromatography and spectrophotometer. The results confirmed that FM-1 was Bacillus proteolyticus. The whole genome sequencing data analysis showed that there were 1495 protein coding genes related to metabolism, including 384 genes for carbohydrate metabolism. All the genes related to the degradation function, such as almA, mdhA, CYPs, ladA, catD, catE and fadE, were enriched in the oxidative phosphorylation signaling pathway, indicating that FM-1 had abundant genes associated with petroleum hydrocarbon degradation. The strain FM-1 could utilize C10-C40 petroleum hydrocarbons as the sole carbon source, and the degradation rate of crude oil was 17.5% in seven days under the experimental conditions. The degradation rate for petroleum hydrocarbon pollutants in shale oil sludge was as high as 91.5% in 28 days. Literature and patent searches found that Bacillus proteolyticus was a kind of new efficient petroleum hydrocarbon degrading bacterium, which had been obtained the Chinese invention patent.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
10.40%
发文量
107
审稿时长
21 days
期刊介绍: International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.
期刊最新文献
Genomics and biodegradation properties of an oleophilic bacterium isolated from shale oil sludge Regulation of microbial activity based on quorum sensing: Implications for biological wastewater treatment Improving bioavailability of lignocellulosic biomass by pretreatment with the marine fungus Chaetomium sp. CS1 Baseline characteristics of the microbial community structure and composition of the world cultural heritage sites in Macau Assessment of MALDI-TOF MS for the identification of cultural heritage insect pests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1