{"title":"Low-dimensional Li+ ion dynamics in the lithiated Buckminster fullerene Li4C60","authors":"Bernhard Gadermaier , H. Martin R. Wilkening","doi":"10.1016/j.ssi.2025.116805","DOIUrl":null,"url":null,"abstract":"<div><div>Lithiated Buckminster fullerene (Li<sub>4</sub>C<sub>60</sub>) has recently been identified as a fast Li<sup>+</sup> ion conductor. Here, we present a comprehensive NMR-based analysis of <sup>7</sup>Li dynamics in Li<sub>4</sub>C<sub>60</sub>. Our findings indicate that long-range lithium hopping is to be characterized by an activation energy of 0.26 eV. At 378 K, the Li<sup>+</sup> jump rate turned out to be in the order of 10<sup>9</sup> s<sup>−1</sup>, which translates into Einstein-Smoluchowski diffusion coefficients <em>D</em> ranging from ca. 2 to 5 × 10<sup>−7</sup> cm<sup>2</sup> s<sup>−1</sup>, depending on the jump distance chosen (3.6–5 Å) to convert the jump rate into <em>D</em>. The corresponding Arrhenius pre-factor reaches 3 × 10<sup>12</sup> s<sup>−1</sup> and lies in the range of typical phonon frequencies. Comparing our relaxation rates with those presented in the literature earlier suggests low-dimensional Li<sup>+</sup> diffusion in Li<sub>4</sub>C<sub>60</sub>. For short-range or localized Li<sup>+</sup> jump processes, presumably governed by motional correlation effects, we find much lower activation energies ranging from 0.08 eV to 0.17 eV.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"421 ","pages":"Article 116805"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000244","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithiated Buckminster fullerene (Li4C60) has recently been identified as a fast Li+ ion conductor. Here, we present a comprehensive NMR-based analysis of 7Li dynamics in Li4C60. Our findings indicate that long-range lithium hopping is to be characterized by an activation energy of 0.26 eV. At 378 K, the Li+ jump rate turned out to be in the order of 109 s−1, which translates into Einstein-Smoluchowski diffusion coefficients D ranging from ca. 2 to 5 × 10−7 cm2 s−1, depending on the jump distance chosen (3.6–5 Å) to convert the jump rate into D. The corresponding Arrhenius pre-factor reaches 3 × 1012 s−1 and lies in the range of typical phonon frequencies. Comparing our relaxation rates with those presented in the literature earlier suggests low-dimensional Li+ diffusion in Li4C60. For short-range or localized Li+ jump processes, presumably governed by motional correlation effects, we find much lower activation energies ranging from 0.08 eV to 0.17 eV.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.