Optimization and evaluation of a water-cooled target probe in linear plasma devices by computational fluid dynamics methods

IF 2.3 2区 物理与天体物理 Q1 NUCLEAR SCIENCE & TECHNOLOGY Nuclear Materials and Energy Pub Date : 2025-02-18 DOI:10.1016/j.nme.2025.101905
Tongzhen Li , Qian Xu , Xin Yang , Fang Ding , Guang-nan Luo , Haishan Zhou
{"title":"Optimization and evaluation of a water-cooled target probe in linear plasma devices by computational fluid dynamics methods","authors":"Tongzhen Li ,&nbsp;Qian Xu ,&nbsp;Xin Yang ,&nbsp;Fang Ding ,&nbsp;Guang-nan Luo ,&nbsp;Haishan Zhou","doi":"10.1016/j.nme.2025.101905","DOIUrl":null,"url":null,"abstract":"<div><div>Effective cooling of the target probe under extreme plasma operational conditions is crucial for ensuring stable and reliable diagnostic measurements. In this study, we designed a water-cooled target probe specifically tailored for deployment in a linear plasma device (LPD). Computational Fluid Dynamics (CFD) methods were employed to evaluate and optimize the cooling performance of the target probe. CFD simulations included different probe base structures and inlet pipe types. The trade-offs between enhanced heat transfer and the associated pressure drop losses for different inlet pipe designs have been comprehensively considered. Simulation results indicated that at a Gaussian heat load of 10 MW/m<sup>2</sup>, which simulates a plasma discharge scenario in the LPD, the maximum temperature of the tungsten probe tip for the optimized target probe was reduced to approximately 723 ℃. Extending the thermal analysis to a future scenario where the target probe is subjected to three adjacent plasma beams, the temperature increase of the tungsten probe tips was not significant. This robust cooling performance highlights the potential of the target probe for application in advanced linear plasma devices that feature multiple or multichannel plasma sources.</div></div>","PeriodicalId":56004,"journal":{"name":"Nuclear Materials and Energy","volume":"42 ","pages":"Article 101905"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Materials and Energy","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352179125000456","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Effective cooling of the target probe under extreme plasma operational conditions is crucial for ensuring stable and reliable diagnostic measurements. In this study, we designed a water-cooled target probe specifically tailored for deployment in a linear plasma device (LPD). Computational Fluid Dynamics (CFD) methods were employed to evaluate and optimize the cooling performance of the target probe. CFD simulations included different probe base structures and inlet pipe types. The trade-offs between enhanced heat transfer and the associated pressure drop losses for different inlet pipe designs have been comprehensively considered. Simulation results indicated that at a Gaussian heat load of 10 MW/m2, which simulates a plasma discharge scenario in the LPD, the maximum temperature of the tungsten probe tip for the optimized target probe was reduced to approximately 723 ℃. Extending the thermal analysis to a future scenario where the target probe is subjected to three adjacent plasma beams, the temperature increase of the tungsten probe tips was not significant. This robust cooling performance highlights the potential of the target probe for application in advanced linear plasma devices that feature multiple or multichannel plasma sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nuclear Materials and Energy
Nuclear Materials and Energy Materials Science-Materials Science (miscellaneous)
CiteScore
3.70
自引率
15.40%
发文量
175
审稿时长
20 weeks
期刊介绍: The open-access journal Nuclear Materials and Energy is devoted to the growing field of research for material application in the production of nuclear energy. Nuclear Materials and Energy publishes original research articles of up to 6 pages in length.
期刊最新文献
Electron beam welding behavior in Eurofer subjected to the PbLi eutectic Resistance to deuterium-induced blistering in laminated microstructure tungsten Thermomechanical analysis for the theoretical optimization of W/Cu monoblocks with functionally graded interlayer Reimplantation of supporting legs on EAST divertor by electron beam brazing First ion temperature measurements in the MAST-U divertor via Retarding Field Energy Analyzer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1