{"title":"A propositional encoding for first-order clausal entailment over infinitely many constants","authors":"Vaishak Belle","doi":"10.1016/j.jsc.2025.102434","DOIUrl":null,"url":null,"abstract":"<div><div>There is a fundamental trade-off between the expressiveness of the language and the tractability of the reasoning task in knowledge representation. On the one hand it is widely acknowledged that relations and more generally, the expressiveness of first-order logic is extremely useful for capturing concepts required for common-sense reasoning. But at the same time the entailment problem is only semi-decidable.</div><div>There have been a wide range of approaches to deal with this trade-off, from restricting the language to propositional logic to limit the expressiveness of the language in terms of the arity of the predicates (as in description logics) or the use of negation (as in Horn logic) to limit reasoning by weakening the entailment relation using non-standard semantics.</div><div>In this work, we address a gap in this literature. We show that there is an intuitive fragment of first-order disjunctive knowledge, for which reasoning is decidable and can be reduced to propositional satisfiability. Knowledge bases in this fragment correspond to universally quantified first-order clauses, but without arity restrictions and without restrictions on the appearance of negation. Queries, however, are expected to be ground formulas. We achieve this result by showing how the entailment over infinitely many infinite-sized structures can be reduced to a search over finitely many finite-size structures. The crux of the argument lies in showing that constants not mentioned in the knowledge base and/or query behave identically (in a suitable formal sense). We then go on to also show that there is also an extension to this result for function symbols.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"130 ","pages":"Article 102434"},"PeriodicalIF":0.6000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717125000161","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a fundamental trade-off between the expressiveness of the language and the tractability of the reasoning task in knowledge representation. On the one hand it is widely acknowledged that relations and more generally, the expressiveness of first-order logic is extremely useful for capturing concepts required for common-sense reasoning. But at the same time the entailment problem is only semi-decidable.
There have been a wide range of approaches to deal with this trade-off, from restricting the language to propositional logic to limit the expressiveness of the language in terms of the arity of the predicates (as in description logics) or the use of negation (as in Horn logic) to limit reasoning by weakening the entailment relation using non-standard semantics.
In this work, we address a gap in this literature. We show that there is an intuitive fragment of first-order disjunctive knowledge, for which reasoning is decidable and can be reduced to propositional satisfiability. Knowledge bases in this fragment correspond to universally quantified first-order clauses, but without arity restrictions and without restrictions on the appearance of negation. Queries, however, are expected to be ground formulas. We achieve this result by showing how the entailment over infinitely many infinite-sized structures can be reduced to a search over finitely many finite-size structures. The crux of the argument lies in showing that constants not mentioned in the knowledge base and/or query behave identically (in a suitable formal sense). We then go on to also show that there is also an extension to this result for function symbols.
期刊介绍:
An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects.
It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.