Online outcome weighted learning with general loss functions

IF 1.8 2区 数学 Q1 MATHEMATICS Journal of Complexity Pub Date : 2025-02-19 DOI:10.1016/j.jco.2025.101931
Aoli Yang , Jun Fan , Dao-Hong Xiang
{"title":"Online outcome weighted learning with general loss functions","authors":"Aoli Yang ,&nbsp;Jun Fan ,&nbsp;Dao-Hong Xiang","doi":"10.1016/j.jco.2025.101931","DOIUrl":null,"url":null,"abstract":"<div><div>The pursuit of individualized treatment rules in precision medicine has generated significant interest due to its potential to optimize clinical outcomes for patients with diverse treatment responses. One approach that has gained attention is outcome weighted learning, which is tailored to estimate optimal individualized treatment rules by leveraging each patient's unique characteristics under a weighted classification framework. However, traditional offline learning algorithms, which process all available data at once, face limitations when applied to high-dimensional electronic health records data due to its sheer volume. Additionally, the dynamic nature of precision medicine requires that learning algorithms can effectively handle streaming data that arrives in a sequential manner. To overcome these challenges, we present a novel framework that combines outcome weighted learning with online gradient descent algorithms, aiming to enhance precision medicine practices. Our framework provides a comprehensive analysis of the learning theory associated with online outcome weighted learning algorithms, taking into account general classification loss functions. We establish the convergence of these algorithms for the first time, providing explicit convergence rates while assuming polynomially decaying step sizes, with (or without) a regularization term. Our findings present a non-trivial extension of online classification to online outcome weighted learning, contributing to the theoretical foundations of learning algorithms tailored for processing streaming input-output-reward type data.</div></div>","PeriodicalId":50227,"journal":{"name":"Journal of Complexity","volume":"88 ","pages":"Article 101931"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Complexity","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885064X25000093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The pursuit of individualized treatment rules in precision medicine has generated significant interest due to its potential to optimize clinical outcomes for patients with diverse treatment responses. One approach that has gained attention is outcome weighted learning, which is tailored to estimate optimal individualized treatment rules by leveraging each patient's unique characteristics under a weighted classification framework. However, traditional offline learning algorithms, which process all available data at once, face limitations when applied to high-dimensional electronic health records data due to its sheer volume. Additionally, the dynamic nature of precision medicine requires that learning algorithms can effectively handle streaming data that arrives in a sequential manner. To overcome these challenges, we present a novel framework that combines outcome weighted learning with online gradient descent algorithms, aiming to enhance precision medicine practices. Our framework provides a comprehensive analysis of the learning theory associated with online outcome weighted learning algorithms, taking into account general classification loss functions. We establish the convergence of these algorithms for the first time, providing explicit convergence rates while assuming polynomially decaying step sizes, with (or without) a regularization term. Our findings present a non-trivial extension of online classification to online outcome weighted learning, contributing to the theoretical foundations of learning algorithms tailored for processing streaming input-output-reward type data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Complexity
Journal of Complexity 工程技术-计算机:理论方法
CiteScore
3.10
自引率
17.60%
发文量
57
审稿时长
>12 weeks
期刊介绍: The multidisciplinary Journal of Complexity publishes original research papers that contain substantial mathematical results on complexity as broadly conceived. Outstanding review papers will also be published. In the area of computational complexity, the focus is on complexity over the reals, with the emphasis on lower bounds and optimal algorithms. The Journal of Complexity also publishes articles that provide major new algorithms or make important progress on upper bounds. Other models of computation, such as the Turing machine model, are also of interest. Computational complexity results in a wide variety of areas are solicited. Areas Include: • Approximation theory • Biomedical computing • Compressed computing and sensing • Computational finance • Computational number theory • Computational stochastics • Control theory • Cryptography • Design of experiments • Differential equations • Discrete problems • Distributed and parallel computation • High and infinite-dimensional problems • Information-based complexity • Inverse and ill-posed problems • Machine learning • Markov chain Monte Carlo • Monte Carlo and quasi-Monte Carlo • Multivariate integration and approximation • Noisy data • Nonlinear and algebraic equations • Numerical analysis • Operator equations • Optimization • Quantum computing • Scientific computation • Tractability of multivariate problems • Vision and image understanding.
期刊最新文献
Weighted mesh algorithms for general Markov decision processes: Convergence and tractability Factoring sparse polynomials fast Online outcome weighted learning with general loss functions Computing approximate roots of monotone functions On the complexity of orbit word problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1