Mohammad Yaser Mofatteh , Ujjwal Khadka , Omid Fatahi Valilai
{"title":"EnerChain: A decentralized knowledge management framework for smart energy systems with smart manufacturing agents via blockchain technology","authors":"Mohammad Yaser Mofatteh , Ujjwal Khadka , Omid Fatahi Valilai","doi":"10.1016/j.joitmc.2025.100499","DOIUrl":null,"url":null,"abstract":"<div><div>Energy management can be designed from different perspectives including production, distribution, and consumption. Focusing on consumption perspective, manufacturing systems can be enhanced by enabling smart machines as agents which operate with their own knowledge representation models in a shopfloor. These agents can benefit from industry 4.0 enablers like IoT including sensors, controllers, and actuators. This paper focuses on how these agents can interoperate with each other and exchange knowledge to optimize energy consumption. Since different knowledge models may not be capable of interacting with other ones based on their different provider semantics. This paper explores the application of blockchain technology for secure, decentralized storage and sharing knowledge models in smart energy systems. The research introduces EnerChain as a blockchain-integrated and a decentralized application (DApp) system prototype that employs smart contracts for access management and conflict resolution. It also incorporates the InterPlanetary File System (IPFS) for efficient off-chain storage, addressing scalability concerns. The feasibility and practicality of this approach are demonstrated through the development of EnerChain. The findings highlight the significant potential of blockchain technology in facilitating efficient knowledge model management for smart shopfloors. Additionally, an operational scenario has been evaluated as a case study for the proposed conceptual model to illustrate how it can solve energy conflicts in a smart environment. An impact analysis at the end of this research shows that EnerChain can make annual 27.5 TWh reduction in residential energy consumption which yields to annual 7.8 million tonnes reduction in CO<sub>2</sub> emissions and annual €8.25 billion financial benefits.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 1","pages":"Article 100499"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0
Abstract
Energy management can be designed from different perspectives including production, distribution, and consumption. Focusing on consumption perspective, manufacturing systems can be enhanced by enabling smart machines as agents which operate with their own knowledge representation models in a shopfloor. These agents can benefit from industry 4.0 enablers like IoT including sensors, controllers, and actuators. This paper focuses on how these agents can interoperate with each other and exchange knowledge to optimize energy consumption. Since different knowledge models may not be capable of interacting with other ones based on their different provider semantics. This paper explores the application of blockchain technology for secure, decentralized storage and sharing knowledge models in smart energy systems. The research introduces EnerChain as a blockchain-integrated and a decentralized application (DApp) system prototype that employs smart contracts for access management and conflict resolution. It also incorporates the InterPlanetary File System (IPFS) for efficient off-chain storage, addressing scalability concerns. The feasibility and practicality of this approach are demonstrated through the development of EnerChain. The findings highlight the significant potential of blockchain technology in facilitating efficient knowledge model management for smart shopfloors. Additionally, an operational scenario has been evaluated as a case study for the proposed conceptual model to illustrate how it can solve energy conflicts in a smart environment. An impact analysis at the end of this research shows that EnerChain can make annual 27.5 TWh reduction in residential energy consumption which yields to annual 7.8 million tonnes reduction in CO2 emissions and annual €8.25 billion financial benefits.