Peng Xin , Xuan Kang , Wei Wu , Gianvito Scaringi , Xueliang Wang , Qiong Wu
{"title":"Centrifuge modelling of a roto-translational landslide in stiff clay formation","authors":"Peng Xin , Xuan Kang , Wei Wu , Gianvito Scaringi , Xueliang Wang , Qiong Wu","doi":"10.1016/j.enggeo.2025.107964","DOIUrl":null,"url":null,"abstract":"<div><div>Roto-translational landslides usually exhibit creep deformation along sliding surfaces, showing transverse cracks on the ground surfaces. However, the scarcity of experimental data has significantly hindered a deep understanding of their failure mechanisms. This research probes into the rotational failure phenomena of landslides in stiff clay formations, utilizing geotechnical centrifuge modelling and laboratory creep tests. Our findings reveal that rotational failures in model slopes are exclusively triggered under conditions of an undrained boundary at the basal shear zone. The post-failure behaviour is characterized by a settlement at the slope crest and a pronounced bulge at the toe, resulting in complex rotational movements along the basal sliding surface. Moreover, our laboratory experiments illuminate the creep behaviour of shear-zone materials under undrained conditions. In particular, samples with a high initial water content under sustained loading are highly susceptible to a quick transition into tertiary creep, leading to accelerated failure. These experimental insights substantially advance our understanding of the rotational failure patterns observed in clay-based landslides.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"349 ","pages":"Article 107964"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795225000602","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Roto-translational landslides usually exhibit creep deformation along sliding surfaces, showing transverse cracks on the ground surfaces. However, the scarcity of experimental data has significantly hindered a deep understanding of their failure mechanisms. This research probes into the rotational failure phenomena of landslides in stiff clay formations, utilizing geotechnical centrifuge modelling and laboratory creep tests. Our findings reveal that rotational failures in model slopes are exclusively triggered under conditions of an undrained boundary at the basal shear zone. The post-failure behaviour is characterized by a settlement at the slope crest and a pronounced bulge at the toe, resulting in complex rotational movements along the basal sliding surface. Moreover, our laboratory experiments illuminate the creep behaviour of shear-zone materials under undrained conditions. In particular, samples with a high initial water content under sustained loading are highly susceptible to a quick transition into tertiary creep, leading to accelerated failure. These experimental insights substantially advance our understanding of the rotational failure patterns observed in clay-based landslides.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.