Advances in metal sulfide anodes for high-performance sodium-ion batteries

IF 2.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY CrystEngComm Pub Date : 2025-01-10 DOI:10.1039/D4CE01209G
Zhilong Yan, Tingxu Sun, Wei Li, Zhiwen Long, Ruizhe Zhang, Keliang Wang, Shenggang Wang and Hui Qiao
{"title":"Advances in metal sulfide anodes for high-performance sodium-ion batteries","authors":"Zhilong Yan, Tingxu Sun, Wei Li, Zhiwen Long, Ruizhe Zhang, Keliang Wang, Shenggang Wang and Hui Qiao","doi":"10.1039/D4CE01209G","DOIUrl":null,"url":null,"abstract":"<p >Anode materials are crucial for the advancement of high-performance sodium-ion batteries, with metal sulfides (MSs) emerging as particularly promising candidates owing to their substantial theoretical capacities (<em>e.g.</em>, FeS<small><sub>2</sub></small> offers a capacity of up to 892 mAh g<small><sup>−1</sup></small>). These materials have gained considerable attention as potential anodes for SIBs. While existing reviews have largely addressed the influence of structural features on performance, limited focus has been placed on the broad variety of MSs and their unique properties. This review provides a concise overview of the common synthesis methods for MSs used as high-performance anodes in SIBs, with a focus on hydrothermal/solvothermal, calcination and electrospinning techniques. Different morphologies and structures can be constructed using these methods. The hydrothermal/solvothermal method is carried out at a lower temperature, while the calcination method yields MSs with higher crystallinity. In addition, electrospinning enables the formation of MSs with a three-dimensional cross-linked structure. The choice of method can be tailored depending on the desired morphology. At the end of this review, recent research advancements in the field are highlighted, addressing the technological challenges and exploring promising research prospects for MSs and their future development.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 9","pages":" 1225-1239"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ce/d4ce01209g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Anode materials are crucial for the advancement of high-performance sodium-ion batteries, with metal sulfides (MSs) emerging as particularly promising candidates owing to their substantial theoretical capacities (e.g., FeS2 offers a capacity of up to 892 mAh g−1). These materials have gained considerable attention as potential anodes for SIBs. While existing reviews have largely addressed the influence of structural features on performance, limited focus has been placed on the broad variety of MSs and their unique properties. This review provides a concise overview of the common synthesis methods for MSs used as high-performance anodes in SIBs, with a focus on hydrothermal/solvothermal, calcination and electrospinning techniques. Different morphologies and structures can be constructed using these methods. The hydrothermal/solvothermal method is carried out at a lower temperature, while the calcination method yields MSs with higher crystallinity. In addition, electrospinning enables the formation of MSs with a three-dimensional cross-linked structure. The choice of method can be tailored depending on the desired morphology. At the end of this review, recent research advancements in the field are highlighted, addressing the technological challenges and exploring promising research prospects for MSs and their future development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CrystEngComm
CrystEngComm 化学-化学综合
CiteScore
5.50
自引率
9.70%
发文量
747
审稿时长
1.7 months
期刊介绍: Design and understanding of solid-state and crystalline materials
期刊最新文献
Back cover Back cover On the pK of crystal surfaces: molecular modeling of crystallite protonation, local reorganization, and solute dissociation† Back cover Second-harmonic generation in OP-GaAs0.75P0.25 heteroepitaxially grown from the vapor phase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1