The embira bark fiber: a sustainable Amazon tape

IF 23.2 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Advanced Composites and Hybrid Materials Pub Date : 2025-02-24 DOI:10.1007/s42114-024-01170-4
Sheron S. Tavares, Lucas de Mendonça Neuba, Henry Colorado Lopera, Sergio Neves Monteiro, Marc André Meyers
{"title":"The embira bark fiber: a sustainable Amazon tape","authors":"Sheron S. Tavares,&nbsp;Lucas de Mendonça Neuba,&nbsp;Henry Colorado Lopera,&nbsp;Sergio Neves Monteiro,&nbsp;Marc André Meyers","doi":"10.1007/s42114-024-01170-4","DOIUrl":null,"url":null,"abstract":"<div><p>The embira bark fiber is routinely used in Brazil to construct simple structures because of its ease of extraction, flexibility, and considerable strength. It plays an important role, somewhat similar to duct tape, and is commonly used for temporary repairs and tying objects. The flexible bark is removed from the tree by making two cuts into it and manually pulling off the fibrous structure. Three similar but distinct embira bark fibers are characterized structurally and mechanically: <i>embira branca</i>, <i>embira capa bode</i>, and <i>embira chichá</i>. The bark separates readily into strips with thicknesses between 0.3 and 1 mm, enabling it to be twisted and bent without damage. The structure consists of aligned cellulose fibers bound by lignin and hemicellulose. Thus, it is a natural composite. The tensile strength of the three fibers varies in the range of 25 to 100 MPa, with no clear difference between them. There is structural and strength consistency among them. The mechanical strength of <i>embira branca</i> is measured for different fiber bundle diameters and is found to increase with decreasing diameter. Thermogravimetric analysis showed that degradation of the fibers initiates at 250 °C, consistent with other lignocellulosic fibers. X-ray diffraction identifies two major components: the monoclinic crystalline structure of cellulose and an amorphous phase; the crystallinity index is approximately 50%. The tensile strength shows significant variation, a characteristic of biological materials; this can be significantly improved by selective growing of embira-bearing trees.</p></div>","PeriodicalId":7220,"journal":{"name":"Advanced Composites and Hybrid Materials","volume":"8 2","pages":""},"PeriodicalIF":23.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42114-024-01170-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Composites and Hybrid Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42114-024-01170-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The embira bark fiber is routinely used in Brazil to construct simple structures because of its ease of extraction, flexibility, and considerable strength. It plays an important role, somewhat similar to duct tape, and is commonly used for temporary repairs and tying objects. The flexible bark is removed from the tree by making two cuts into it and manually pulling off the fibrous structure. Three similar but distinct embira bark fibers are characterized structurally and mechanically: embira branca, embira capa bode, and embira chichá. The bark separates readily into strips with thicknesses between 0.3 and 1 mm, enabling it to be twisted and bent without damage. The structure consists of aligned cellulose fibers bound by lignin and hemicellulose. Thus, it is a natural composite. The tensile strength of the three fibers varies in the range of 25 to 100 MPa, with no clear difference between them. There is structural and strength consistency among them. The mechanical strength of embira branca is measured for different fiber bundle diameters and is found to increase with decreasing diameter. Thermogravimetric analysis showed that degradation of the fibers initiates at 250 °C, consistent with other lignocellulosic fibers. X-ray diffraction identifies two major components: the monoclinic crystalline structure of cellulose and an amorphous phase; the crystallinity index is approximately 50%. The tensile strength shows significant variation, a characteristic of biological materials; this can be significantly improved by selective growing of embira-bearing trees.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在巴西,Embira 树皮纤维通常用于建造简单的建筑,因为它易于提取、柔韧性好、强度大。它的作用非常重要,有点类似于胶带,通常用于临时修补和捆绑物品。从树上取下柔韧的树皮时,要在树皮上切两刀,然后用手拉断纤维结构。从结构和机械上看,有三种相似但又截然不同的恩比拉树皮纤维:恩比拉-布兰卡(embira branca)、恩比拉-卡帕-博德(embira capa bode)和恩比拉-奇查(embira chichá)。树皮很容易分离成厚度在 0.3 至 1 毫米之间的条状,因此可以扭曲和弯曲而不会损坏。其结构由排列整齐的纤维素纤维组成,并由木质素和半纤维素结合。因此,它是一种天然复合材料。三种纤维的抗拉强度在 25 到 100 兆帕之间,没有明显差异。它们之间的结构和强度具有一致性。对不同纤维束直径的 embira branca 的机械强度进行了测量,发现其机械强度随纤维束直径的减小而增加。热重分析表明,纤维在 250 °C 开始降解,这与其他木质纤维素纤维的降解过程一致。X 射线衍射确定了两种主要成分:纤维素的单斜晶体结构和无定形相;结晶度指数约为 50%。拉伸强度变化很大,这是生物材料的一个特点;通过选择性种植含胚胎的树木,可以显著提高拉伸强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.00
自引率
21.40%
发文量
185
期刊介绍: Advanced Composites and Hybrid Materials is a leading international journal that promotes interdisciplinary collaboration among materials scientists, engineers, chemists, biologists, and physicists working on composites, including nanocomposites. Our aim is to facilitate rapid scientific communication in this field. The journal publishes high-quality research on various aspects of composite materials, including materials design, surface and interface science/engineering, manufacturing, structure control, property design, device fabrication, and other applications. We also welcome simulation and modeling studies that are relevant to composites. Additionally, papers focusing on the relationship between fillers and the matrix are of particular interest. Our scope includes polymer, metal, and ceramic matrices, with a special emphasis on reviews and meta-analyses related to materials selection. We cover a wide range of topics, including transport properties, strategies for controlling interfaces and composition distribution, bottom-up assembly of nanocomposites, highly porous and high-density composites, electronic structure design, materials synergisms, and thermoelectric materials. Advanced Composites and Hybrid Materials follows a rigorous single-blind peer-review process to ensure the quality and integrity of the published work.
期刊最新文献
MOF-derived carbon-coated NiS/NiS2 yolk-shell spheres as a satisfactory positive electrode material for hybrid supercapacitors Glutamic acid-loaded separable microneedle composite for long-acting hair regeneration treatment Sustainable prospects of lignocellulosic wood and natural fiber-based materials in 3D and 4D printing The thermal reliability of indium-doped low solver SAC/Cu joints and the corresponding alloys Exploration of the zinc storage mechanism and kinetics of vanadium sulfides/reduced graphene oxide composites for aqueous zinc-ion battery cathodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1