Comparative Single-Cell Analysis Reveals Tendon Progenitor Dysfunction by Age-Associated Oxidative Stress and Its Restoration by Antioxidant Treatments
Youngjae Jeong, Dongwook Yang, Jea Giezl Solidum, Laura Ortinau, Dongsu Park
{"title":"Comparative Single-Cell Analysis Reveals Tendon Progenitor Dysfunction by Age-Associated Oxidative Stress and Its Restoration by Antioxidant Treatments","authors":"Youngjae Jeong, Dongwook Yang, Jea Giezl Solidum, Laura Ortinau, Dongsu Park","doi":"10.1002/jcp.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Impaired healing of adult tendons with fibrosis remains clinical challenges while neonatal tendons have full functional restoration. However, age-associated cellular and molecular changes in tendon cells and tendon stem/progenitor cells (TSPCs) remain unknown. Here, comparative single cell transcriptomics of early postnatal (2 weeks old) and adult (20 weeks old) mouse tendons revealed that adult tendons have reduced number of TSPCs, decreased gene expression in tendon and cartilage development, and a greater population of fibro-tenogenic cells. Notably, adult TSPCs and tenocytes exhibit increased expression of immune-response and oxidative-stress genes with higher EGFR but decreased IGF signaling. Adult tendon cells show increased levels of intracellular reactive oxygen species (ROS) in vivo. In contrast, antioxidant treatment of adult tendons significantly reduces intracellular ROS of TSPCs and improves tendon strength in vivo. Hence, these findings suggest that increased inflammation and ROS during tendon aging deteriorates tendon function and regeneration that can be mitigated by antioxidant treatment.</p>\n </div>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":"240 2","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcp.70016","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Impaired healing of adult tendons with fibrosis remains clinical challenges while neonatal tendons have full functional restoration. However, age-associated cellular and molecular changes in tendon cells and tendon stem/progenitor cells (TSPCs) remain unknown. Here, comparative single cell transcriptomics of early postnatal (2 weeks old) and adult (20 weeks old) mouse tendons revealed that adult tendons have reduced number of TSPCs, decreased gene expression in tendon and cartilage development, and a greater population of fibro-tenogenic cells. Notably, adult TSPCs and tenocytes exhibit increased expression of immune-response and oxidative-stress genes with higher EGFR but decreased IGF signaling. Adult tendon cells show increased levels of intracellular reactive oxygen species (ROS) in vivo. In contrast, antioxidant treatment of adult tendons significantly reduces intracellular ROS of TSPCs and improves tendon strength in vivo. Hence, these findings suggest that increased inflammation and ROS during tendon aging deteriorates tendon function and regeneration that can be mitigated by antioxidant treatment.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.