{"title":"Rutecarpine Suppresses Non-Small Cell Lung Cancer Progression Through Activating the STING Pathway and Elevating CD8+ T Cells","authors":"Ze-Bo Jiang, Qing-Hua He, Li-Ping Kang, Sha Jiang, Jia-Ni Liu, Cong Xu, Wen-Jun Wang, Xuan-Run Wang, Qi-Biao Wu, Dong-Hui Huang","doi":"10.1111/cbdd.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related deaths. Rutecarpine (RUT), a quinazolinocarboline alkaloid that is naturally occurring and present in Chinese medicinal herbs, has been shown to have anticancer properties in several cancer cell lines. However, the specific antitumor mechanisms of RUT in NSCLC remain unclear. This study demonstrates that RUT induces apoptosis and significantly reduces the viability of NSCLC cell lines. This effect is achieved by stimulating intracellular ROS production, leading to mitochondrial dysfunction. The decreased cell viability observed with RUT treatment is attributed to the elimination of ROS and apoptosis through the suppression of ROS by N-acetylcysteine (NAC). Furthermore, RUT therapy elevated the production of CXCL10 and CCL5 in NSCLC cell lines and markedly activated the STING pathway in NSCLC cells. Mechanistically, RUT substantially decreased the levels of PD-L1 protein in NSCLC cells. Notably, in vivo experiments demonstrated that RUT significantly inhibits mouse NSCLC tumor growth in mice, exhibiting anti-tumor activity by elevating CD8<sup>+</sup> T cells. These findings strongly support RUT as a promising anti-cancer drug for NSCLC.</p>\n </div>","PeriodicalId":143,"journal":{"name":"Chemical Biology & Drug Design","volume":"105 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Biology & Drug Design","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cbdd.70070","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related deaths. Rutecarpine (RUT), a quinazolinocarboline alkaloid that is naturally occurring and present in Chinese medicinal herbs, has been shown to have anticancer properties in several cancer cell lines. However, the specific antitumor mechanisms of RUT in NSCLC remain unclear. This study demonstrates that RUT induces apoptosis and significantly reduces the viability of NSCLC cell lines. This effect is achieved by stimulating intracellular ROS production, leading to mitochondrial dysfunction. The decreased cell viability observed with RUT treatment is attributed to the elimination of ROS and apoptosis through the suppression of ROS by N-acetylcysteine (NAC). Furthermore, RUT therapy elevated the production of CXCL10 and CCL5 in NSCLC cell lines and markedly activated the STING pathway in NSCLC cells. Mechanistically, RUT substantially decreased the levels of PD-L1 protein in NSCLC cells. Notably, in vivo experiments demonstrated that RUT significantly inhibits mouse NSCLC tumor growth in mice, exhibiting anti-tumor activity by elevating CD8+ T cells. These findings strongly support RUT as a promising anti-cancer drug for NSCLC.
期刊介绍:
Chemical Biology & Drug Design is a peer-reviewed scientific journal that is dedicated to the advancement of innovative science, technology and medicine with a focus on the multidisciplinary fields of chemical biology and drug design. It is the aim of Chemical Biology & Drug Design to capture significant research and drug discovery that highlights new concepts, insight and new findings within the scope of chemical biology and drug design.