Camel milk exosomes regulate glucose metabolism by inhibiting mitochondrial complex I in hepatocytes.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES BMC Veterinary Research Pub Date : 2025-02-22 DOI:10.1186/s12917-025-04555-9
Bin Yang, Shifeng Du, Ling Liu, Jingjing Wang, Demtu Er
{"title":"Camel milk exosomes regulate glucose metabolism by inhibiting mitochondrial complex I in hepatocytes.","authors":"Bin Yang, Shifeng Du, Ling Liu, Jingjing Wang, Demtu Er","doi":"10.1186/s12917-025-04555-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Camel milk is known to have hypoglycemic properties. Previous studies found that camel milk exosomes (CM-exo) may regulate cellular glucose metabolism through the inhibition of mitochondrial complex I, but this hypothesis has not been verified by other experiments. The objective of this study was to verify the hypothesis that CM-exo regulated glucose metabolism in hepatocytes by inhibiting mitochondrial complex I pathway. AML12 cells were treated with extracted exosomes from camel milk and the effect of the CM-exo on cell viability was examined by cell counting kit (CCK)-8 assays. The glucose content of the cell culture medium was measured to determine the glucose consumption of the cells. Lactate release from the cells was determined by measuring the lactate content in the cell culture medium. The glycogen content of AML12 cells was detected. The activity of complex I and the contents of ATP, NAD<sup>+</sup> and NADH were measured. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylated AMPK (p-AMPK) were detected by western blotting. The AML12 cells were treated with medium containing CM-exo and gluconeogenic substrates and the glucose content in the cells was determined. The protein expression levels of ten-eleven translocation methylcytosine dioxygenases (TET3), hepatocyte nuclear factor 4α-Promoter 2 (HNF4α-P2), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6PC), glycogen synthase kinase 3β (GSK3β) and phosphorylation of GSK3β (p-GSK3β) were detected by western blotting.</p><p><strong>Results: </strong>The results of this study showed that a high dose of CM-exo inhibited the viability of AML12 cells. It promoted glucose consumption, glycogen content and lactate release in AML12 cells, inhibited complex I activity, ATP content, NAD<sup>+</sup> content, and NAD<sup>+</sup>/NADH ratio, and increased NADH content. The CM-exo increased the protein levels of p-AMPK, p-GSK3β, the protein expression ratio of p-AMPK/AMPK, p-GSK3β/GSK3β and decreased the glucose content and the protein expression levels of intracellular TET3, HNF4α-P2, PEPCK and G6PC.</p><p><strong>Conclusions: </strong>By inhibiting the activity of mitochondrial complex I in hepatocytes, CM-exo inhibited oxidative phosphorylation, oxidation of NADH to NAD<sup>+</sup> and synthesis of ATP, enhanced glycolysis, activated AMPK and resulted in decreased gluconeogenesis and increased glycogen synthesis.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"85"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04555-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Camel milk is known to have hypoglycemic properties. Previous studies found that camel milk exosomes (CM-exo) may regulate cellular glucose metabolism through the inhibition of mitochondrial complex I, but this hypothesis has not been verified by other experiments. The objective of this study was to verify the hypothesis that CM-exo regulated glucose metabolism in hepatocytes by inhibiting mitochondrial complex I pathway. AML12 cells were treated with extracted exosomes from camel milk and the effect of the CM-exo on cell viability was examined by cell counting kit (CCK)-8 assays. The glucose content of the cell culture medium was measured to determine the glucose consumption of the cells. Lactate release from the cells was determined by measuring the lactate content in the cell culture medium. The glycogen content of AML12 cells was detected. The activity of complex I and the contents of ATP, NAD+ and NADH were measured. The protein expression levels of adenosine monophosphate-activated protein kinase (AMPK) and phosphorylated AMPK (p-AMPK) were detected by western blotting. The AML12 cells were treated with medium containing CM-exo and gluconeogenic substrates and the glucose content in the cells was determined. The protein expression levels of ten-eleven translocation methylcytosine dioxygenases (TET3), hepatocyte nuclear factor 4α-Promoter 2 (HNF4α-P2), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6PC), glycogen synthase kinase 3β (GSK3β) and phosphorylation of GSK3β (p-GSK3β) were detected by western blotting.

Results: The results of this study showed that a high dose of CM-exo inhibited the viability of AML12 cells. It promoted glucose consumption, glycogen content and lactate release in AML12 cells, inhibited complex I activity, ATP content, NAD+ content, and NAD+/NADH ratio, and increased NADH content. The CM-exo increased the protein levels of p-AMPK, p-GSK3β, the protein expression ratio of p-AMPK/AMPK, p-GSK3β/GSK3β and decreased the glucose content and the protein expression levels of intracellular TET3, HNF4α-P2, PEPCK and G6PC.

Conclusions: By inhibiting the activity of mitochondrial complex I in hepatocytes, CM-exo inhibited oxidative phosphorylation, oxidation of NADH to NAD+ and synthesis of ATP, enhanced glycolysis, activated AMPK and resulted in decreased gluconeogenesis and increased glycogen synthesis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骆驼奶外泌体通过抑制肝细胞线粒体复合体I调节葡萄糖代谢
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
期刊最新文献
Attachment sites of Ixodes ricinus, Ixodes hexagonus/Ixodes canisuga and Dermacentor reticulatus ticks and risk factors of infestation intensity and engorgement duration in dogs and cats. Camel milk exosomes regulate glucose metabolism by inhibiting mitochondrial complex I in hepatocytes. Comparative RNA-Seq analysis of differentially expressed genes in the sertoli cells of yak and cattle-yak. Distribution characteristics and morphological comparison of telocytes in the aortic bulb and myocardium of yak heart. Genetic counseling in veterinary medicine: towards an evidence-based definition for the small animal practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1