New fish migrations into the Panama Canal increase likelihood of interoceanic invasions in the Americas.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2025-02-19 DOI:10.1016/j.cub.2025.01.049
Gustavo A Castellanos-Galindo, Diana M T Sharpe, D Ross Robertson, Victor Bravo, Jonathan M Jeschke, Mark E Torchin
{"title":"New fish migrations into the Panama Canal increase likelihood of interoceanic invasions in the Americas.","authors":"Gustavo A Castellanos-Galindo, Diana M T Sharpe, D Ross Robertson, Victor Bravo, Jonathan M Jeschke, Mark E Torchin","doi":"10.1016/j.cub.2025.01.049","DOIUrl":null,"url":null,"abstract":"<p><p>Maritime shipping is vital for commercial trade and well recognized as a main pathway for the spread of non-native species.<sup>1</sup> For over a century, the Panama Canal in Central America has played a major role in global trade, connecting the Atlantic and Pacific oceans. Historically, the introduction of species through the Panama Canal has been relatively low, largely due to the existence of a soft barrier-the freshwater Lake Gatun-inside the canal.<sup>2</sup><sup>,</sup><sup>3</sup><sup>,</sup><sup>4</sup> However, the 2016 expansion of the Panama Canal involved major structural changes to the canal's lock system, which may have increased the likelihood that more marine fish species and greater numbers of them enter the lake and eventually cross the canal. To test this prediction, we used standardized quantitative comparisons of the fish communities of Lake Gatun, a system with a rich record of biological introductions,<sup>5</sup><sup>,</sup><sup>6</sup> before (2013-2016) and after (2019-2023) the canal expansion. We observed a shift from a freshwater-dominated to a marine-dominated fish community in several areas inside the lake after 2016. The increase in marine organisms in this aquatic corridor may represent a potential invasion in progress, with a greater likelihood of some species eventually passing through the canal and colonizing the opposite ocean. The ecological and evolutionary consequences of these changes are difficult to predict. However, as most of these marine fishes are top predators with wide niche breadths, their colonization of Atlantic and Pacific oceans will likely alter ecological interactions and potentially lead to ecosystem-level changes.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.01.049","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maritime shipping is vital for commercial trade and well recognized as a main pathway for the spread of non-native species.1 For over a century, the Panama Canal in Central America has played a major role in global trade, connecting the Atlantic and Pacific oceans. Historically, the introduction of species through the Panama Canal has been relatively low, largely due to the existence of a soft barrier-the freshwater Lake Gatun-inside the canal.2,3,4 However, the 2016 expansion of the Panama Canal involved major structural changes to the canal's lock system, which may have increased the likelihood that more marine fish species and greater numbers of them enter the lake and eventually cross the canal. To test this prediction, we used standardized quantitative comparisons of the fish communities of Lake Gatun, a system with a rich record of biological introductions,5,6 before (2013-2016) and after (2019-2023) the canal expansion. We observed a shift from a freshwater-dominated to a marine-dominated fish community in several areas inside the lake after 2016. The increase in marine organisms in this aquatic corridor may represent a potential invasion in progress, with a greater likelihood of some species eventually passing through the canal and colonizing the opposite ocean. The ecological and evolutionary consequences of these changes are difficult to predict. However, as most of these marine fishes are top predators with wide niche breadths, their colonization of Atlantic and Pacific oceans will likely alter ecological interactions and potentially lead to ecosystem-level changes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
A common molecular mechanism underlying Cornelia de Lange and CHOPS syndromes. New fish migrations into the Panama Canal increase likelihood of interoceanic invasions in the Americas. Sleep-wake-related changes in intracellular chloride regulate plasticity at glutamatergic cortical synapses. Detection and neural encoding of whisker-generated sounds in mice. Binocular processing facilitates escape behavior through multiple pathways to the superior colliculus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1