Macrocarpal I induces immunogenic cell death and synergizes with immune checkpoint inhibition by targeting tubulin and PARP1 in colorectal cancer.

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2025-02-22 DOI:10.1038/s41420-025-02360-9
Yaxin Zhang, Huali Li, Yali Zhao, Lingtao Liu, Yi Zhou, Xingyan Pan, Yanqing Ding, Wenting Liao, Lu Qi, Chengmei Huang, Na Tang
{"title":"Macrocarpal I induces immunogenic cell death and synergizes with immune checkpoint inhibition by targeting tubulin and PARP1 in colorectal cancer.","authors":"Yaxin Zhang, Huali Li, Yali Zhao, Lingtao Liu, Yi Zhou, Xingyan Pan, Yanqing Ding, Wenting Liao, Lu Qi, Chengmei Huang, Na Tang","doi":"10.1038/s41420-025-02360-9","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) presents an obstacle to immunotherapy, primarily because most cases are microsatellite stable (MSS) tumors, which are often described as \"cold tumors\" with limited immunogenicity. Recent studies have indicated that several therapeutic approaches, such as chemotherapy and targeted therapies, can elicit immunogenic cell death (ICD) and stimulate immune responses. However, challenges such as target affinity and in vivo pharmacokinetics limit the efficacy and immune response of current targeted therapies. In this study, we demonstrate that Macrocarpal I is a potent inducer of ICD by activating the PERK/eIF2A/ATF4/CHOP signaling pathway. Furthermore, Macrocarpal I induces apoptosis and ferroptosis, both of which act as triggers for ICD. Mechanistically, Macrocarpal I directly targets TUBB2B and PARP1, disrupting microtubule polymerization and DNA repair processes. Importantly, treatment with Macrocarpal I enhances the anti-tumor immune response and augments responsiveness to anti-PD-1 therapy in an MC38 syngeneic mouse model of CRC.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"73"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846858/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02360-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Colorectal cancer (CRC) presents an obstacle to immunotherapy, primarily because most cases are microsatellite stable (MSS) tumors, which are often described as "cold tumors" with limited immunogenicity. Recent studies have indicated that several therapeutic approaches, such as chemotherapy and targeted therapies, can elicit immunogenic cell death (ICD) and stimulate immune responses. However, challenges such as target affinity and in vivo pharmacokinetics limit the efficacy and immune response of current targeted therapies. In this study, we demonstrate that Macrocarpal I is a potent inducer of ICD by activating the PERK/eIF2A/ATF4/CHOP signaling pathway. Furthermore, Macrocarpal I induces apoptosis and ferroptosis, both of which act as triggers for ICD. Mechanistically, Macrocarpal I directly targets TUBB2B and PARP1, disrupting microtubule polymerization and DNA repair processes. Importantly, treatment with Macrocarpal I enhances the anti-tumor immune response and augments responsiveness to anti-PD-1 therapy in an MC38 syngeneic mouse model of CRC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
NFIX suppresses breast cancer cell proliferation by delaying mitosis through downregulation of CDK1 expression. Chromobox protein homolog 7 suppresses the stem-like phenotype of glioblastoma cells by regulating the myosin heavy chain 9-NF-κB signaling pathway. SREBF1-based metabolic reprogramming in prostate cancer promotes tumor ferroptosis resistance. TDP43 is a newly identified substrate for PS1, enhancing the expression of APP following cleavage. Macrocarpal I induces immunogenic cell death and synergizes with immune checkpoint inhibition by targeting tubulin and PARP1 in colorectal cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1