Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci.

IF 3.6 3区 生物学 Q1 ZOOLOGY Journal of invertebrate pathology Pub Date : 2025-02-20 DOI:10.1016/j.jip.2025.108291
Clebson S Tavares, Xinyue Wang, Saptarshi Ghosh, Ruchir Mishra, Bryony C Bonning
{"title":"Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci.","authors":"Clebson S Tavares, Xinyue Wang, Saptarshi Ghosh, Ruchir Mishra, Bryony C Bonning","doi":"10.1016/j.jip.2025.108291","DOIUrl":null,"url":null,"abstract":"<p><p>The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC<sub>50</sub>) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC<sub>50</sub> values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.</p>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":" ","pages":"108291"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jip.2025.108291","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The whitefly, Bemisia tabaci, is among the most important threats to global agriculture and food security. In addition to losses associated with feeding, B. tabaci vectors hundreds of plant viruses, many of which cause severe disease in staple food crops. The management of B. tabaci is confounded by extensive resistance to chemical insecticides. While pesticidal proteins derived from entomopathogenic bacteria such as Bacillus thuringiensis (Bt) could provide for alternative management approaches, only one pesticidal protein with toxicity to B. tabaci has been identified. Here we screened 11 Bt-derived pesticidal proteins from several different structural classes against the highly invasive, Middle East-Asian Minor 1 (MEAM1) cryptic species of B. tabaci, and assessed the impact of a B. tabaci-active protein on the gut epithelial membrane by transmission electron microscopy. The pesticidal proteins were expressed in Bt or in Escherichia coli and purified for use in bioassays. The toxicity of purified proteins was first assessed by feeding adults on a single dose followed by lethal concentration (LC50) determination for proteins with significant mortality relative to the buffer control. The proteins Tpp78Aa1, Tpp78Ba1, and Cry1Ca were toxic to B. tabaci with LC50 values of 99, 96, and 351 µg/mL, respectively. Disruption of the brush border and severe reduction in microvilli on the gut surface caused by Tpp78Aa1 is consistent with the mode of action of Bt-derived pesticidal proteins. These proteins may provide valuable tools for the integrated management of B. tabaci populations and associated reduced incidence of B. tabaci vectored plant viral diseases.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
5.90%
发文量
94
审稿时长
1 months
期刊介绍: The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates. The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.
期刊最新文献
Prevalence of a microsporidian parasite in different social forms of the red imported fire ant, Solenopsis invicta, in its native range in Argentina Characterization and functional analysis of the small heat shock protein HSP19.5 in Bombyx mori in response to Nosema bombycis infection Editorial Board Bacillus thuringiensis-derived pesticidal proteins toxic to the whitefly, Bemisia tabaci. Identification and detection of known and new viruses in larvae of laboratory-reared fall armyworm, Spodoptera frugiperda
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1