Identifying gene expression and cellular pathways involved in glomerular AL-amyloidosis and correlation with experimental data: seeking novel therapeutic interventions.

IF 1.1 4区 医学 Q4 MICROSCOPY Ultrastructural Pathology Pub Date : 2025-02-21 DOI:10.1080/01913123.2025.2468708
Guillermo A Herrera, Jiamin Teng, Chun Zeng, Luis Del Pozo-Yauner, Bing Liu, Elba A Turbat-Herrera
{"title":"Identifying gene expression and cellular pathways involved in glomerular AL-amyloidosis and correlation with experimental data: seeking novel therapeutic interventions.","authors":"Guillermo A Herrera, Jiamin Teng, Chun Zeng, Luis Del Pozo-Yauner, Bing Liu, Elba A Turbat-Herrera","doi":"10.1080/01913123.2025.2468708","DOIUrl":null,"url":null,"abstract":"<p><p>The prognosis of myeloma is based on controlling the plasma cell burden and thus, management of the production of monoclonal light chains has improved considerably, expanding survival and quality of life. However, the effects of the monoclonal light chains in the various organs result in alterations that may lead to renal failure. There is a crucial need to ameliorate or abolish renal damage. Organ-based therapies must be developed. Glomerulopathic light chains interact with mesangial cells using the SORL1 receptor and downstream effects lead to divergent mesangial alterations. While the multi-step process occurring when amyloidogenic light chains interact with mesangial cells has been elucidated in the laboratory, gene expression profiles and activated cellular pathways in human glomeruli have not been probed. Mesangial cells from five renal biopsies at different stages of glomerular amyloidosis were interrogated using spatial transcriptomics and compared with those from normal biopsy controls to identify cellular pathways and gene expression changes. The two most significant statistically overexpressed genes (FDR <0.05) when comparing control, early vs late cases were heat shock protein 90AB1 and HSPB1, known to be involved in protein misfolding and aggregation. The overexpressed genes exercise function and regulation over cellular pathways promoting apoptosis, vesicular transport, metalloproteinase activation, collagen degradation, gap junction degradation, GTPase cycle activation, and organelle biogenesis. This data confirmed the results previously reached in the research laboratory. Spatial transcriptomics demonstrated uniquely activated genes and cellular pathways in mesangial cells involved in the initiation and progression of glomerular amyloidosis, uncovering novel genes and new therapeutic targets.</p>","PeriodicalId":23430,"journal":{"name":"Ultrastructural Pathology","volume":" ","pages":"1-19"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrastructural Pathology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01913123.2025.2468708","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

The prognosis of myeloma is based on controlling the plasma cell burden and thus, management of the production of monoclonal light chains has improved considerably, expanding survival and quality of life. However, the effects of the monoclonal light chains in the various organs result in alterations that may lead to renal failure. There is a crucial need to ameliorate or abolish renal damage. Organ-based therapies must be developed. Glomerulopathic light chains interact with mesangial cells using the SORL1 receptor and downstream effects lead to divergent mesangial alterations. While the multi-step process occurring when amyloidogenic light chains interact with mesangial cells has been elucidated in the laboratory, gene expression profiles and activated cellular pathways in human glomeruli have not been probed. Mesangial cells from five renal biopsies at different stages of glomerular amyloidosis were interrogated using spatial transcriptomics and compared with those from normal biopsy controls to identify cellular pathways and gene expression changes. The two most significant statistically overexpressed genes (FDR <0.05) when comparing control, early vs late cases were heat shock protein 90AB1 and HSPB1, known to be involved in protein misfolding and aggregation. The overexpressed genes exercise function and regulation over cellular pathways promoting apoptosis, vesicular transport, metalloproteinase activation, collagen degradation, gap junction degradation, GTPase cycle activation, and organelle biogenesis. This data confirmed the results previously reached in the research laboratory. Spatial transcriptomics demonstrated uniquely activated genes and cellular pathways in mesangial cells involved in the initiation and progression of glomerular amyloidosis, uncovering novel genes and new therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ultrastructural Pathology
Ultrastructural Pathology 医学-病理学
CiteScore
2.00
自引率
10.00%
发文量
40
审稿时长
6-12 weeks
期刊介绍: Ultrastructural Pathology is the official journal of the Society for Ultrastructural Pathology. Published bimonthly, we are the only journal to be devoted entirely to diagnostic ultrastructural pathology. Ultrastructural Pathology is the ideal journal to publish high-quality research on the following topics: Advances in the uses of electron microscopic and immunohistochemical techniques Correlations of ultrastructural data with light microscopy, histochemistry, immunohistochemistry, biochemistry, cell and tissue culturing, and electron probe analysis Important new, investigative, clinical, and diagnostic EM methods.
期刊最新文献
Identifying gene expression and cellular pathways involved in glomerular AL-amyloidosis and correlation with experimental data: seeking novel therapeutic interventions. Effect of copper oxide nanoparticles (CuONPs) on the testes of adult male albino rats and the possible protective role of extra virgin olive oil (EVOO). Induction of DNA damage and growth arrest by citalopram in breast cancer cells mediated via activation of Gadd45a and apoptotic genes. The ultrastructural changes in the adult rat ovary after administration of copper oxide nanoparticles and the possible ameliorative influence of selenium. Live and let die: analyzing ultrastructural features in cell death.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1