Alexander Haidurov, Andrei O Zheltukhin, Anastasiya V Snezhkina, George S Krasnov, Anna V Kudryavtseva, Andrei V Budanov
{"title":"p53-regulated SESN1 and SESN2 regulate cell proliferation and cell death through control of STAT3.","authors":"Alexander Haidurov, Andrei O Zheltukhin, Anastasiya V Snezhkina, George S Krasnov, Anna V Kudryavtseva, Andrei V Budanov","doi":"10.1186/s12964-025-02104-3","DOIUrl":null,"url":null,"abstract":"<p><p>Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"105"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02104-3","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sestrin1 and Sestrin2 (SESN1&2) are evolutionarily conserved, stress-responsive proteins that regulate cell growth and viability. The primary target of Sestrins is the mTORC1 protein kinase, an activator of anabolic processes and an autophagy inhibitor. Our previous studies showed that inactivating SESN1&2 in lung adenocarcinoma A549 cells accelerates cell proliferation and confers resistance to cell death without affecting mTORC1 activity, suggesting that SESN1&2 modulate cellular processes via mTORC1-independent mechanisms. This work describes a new mechanism through which SESN1&2 regulate cell proliferation and death by suppressing the STAT3 transcription factor. Normally activated in response to stress and inflammation, STAT3 is frequently overactivated in human cancers. This overactivation promotes the expression of pro-proliferative and anti-apoptotic genes that drive carcinogenesis. We demonstrate that SESN1&2 inactivation stimulates STAT3 by downregulating the PTPRD phosphatase, a protein responsible for STAT3 dephosphorylation. Our study demonstrates that SESN1&2 deficiency may cause STAT3 activation and facilitate carcinogenesis and drug resistance, making SESN1&2 reactivation a potential cancer treatment strategy.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.