AskBeacon-performing genomic data exchange and analytics with natural language.

Anuradha Wickramarachchi, Shakila Tonni, Sonali Majumdar, Sarvnaz Karimi, Sulev Kõks, Brendan Hosking, Jordi Rambla, Natalie A Twine, Yatish Jain, Denis C Bauer
{"title":"AskBeacon-performing genomic data exchange and analytics with natural language.","authors":"Anuradha Wickramarachchi, Shakila Tonni, Sonali Majumdar, Sarvnaz Karimi, Sulev Kõks, Brendan Hosking, Jordi Rambla, Natalie A Twine, Yatish Jain, Denis C Bauer","doi":"10.1093/bioinformatics/btaf079","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Enabling clinicians and researchers to directly interact with global genomic data resources by removing technological barriers is vital for medical genomics. AskBeacon enables large language models (LLMs) to be applied to securely shared cohorts via the Global Alliance for Genomics and Health Beacon protocol. By simply \"asking\" Beacon, actionable insights can be gained, analyzed, and made publication-ready.</p><p><strong>Results: </strong>In the Parkinson's Progression Markers Initiative (PPMI), we use natural language to ask whether the sex-differences observed in Parkinson's disease are due to X-linked or autosomal markers. AskBeacon returns a publication-ready visualization showing that for PPMI the autosomal marker occurred 1.4 times more often in males with Parkinson's disease than females, compared to no differences for the X-linked marker. We evaluate commercial and open-weight LLM models, as well as different architectures to identify the best strategy for translating research questions to Beacon queries. AskBeacon implements extensive safety guardrails to ensure that genomic data is not exposed to the LLM directly, and that generated code for data extraction, analysis and visualization process is sanitized and hallucination resistant, so data cannot be leaked or falsified.</p><p><strong>Availability and implementation: </strong>AskBeacon is available at https://github.com/aehrc/AskBeacon.</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Enabling clinicians and researchers to directly interact with global genomic data resources by removing technological barriers is vital for medical genomics. AskBeacon enables large language models (LLMs) to be applied to securely shared cohorts via the Global Alliance for Genomics and Health Beacon protocol. By simply "asking" Beacon, actionable insights can be gained, analyzed, and made publication-ready.

Results: In the Parkinson's Progression Markers Initiative (PPMI), we use natural language to ask whether the sex-differences observed in Parkinson's disease are due to X-linked or autosomal markers. AskBeacon returns a publication-ready visualization showing that for PPMI the autosomal marker occurred 1.4 times more often in males with Parkinson's disease than females, compared to no differences for the X-linked marker. We evaluate commercial and open-weight LLM models, as well as different architectures to identify the best strategy for translating research questions to Beacon queries. AskBeacon implements extensive safety guardrails to ensure that genomic data is not exposed to the LLM directly, and that generated code for data extraction, analysis and visualization process is sanitized and hallucination resistant, so data cannot be leaked or falsified.

Availability and implementation: AskBeacon is available at https://github.com/aehrc/AskBeacon.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
PixelsDB: Serverless and Natural-Language-Aided Data Analytics with Flexible Service Levels and Prices
IF 0 arXiv - CS - Human-Computer InteractionPub Date : 2024-05-30 DOI: arxiv-2405.19784
Haoqiong Bian, Dongyang Geng, Haoyang Li, Anastasia Ailamaki
Scalable genomic data exchange and analytics with sBeacon
IF 46.9 1区 生物学Nature biotechnologyPub Date : 2023-09-14 DOI: 10.1038/s41587-023-01972-9
Anuradha Wickramarachchi, Brendan Hosking, Yatish Jain, John Grimes, Mitchell J. O’Brien, Tracey Wright, Mark A. Burgess, Victor San Kho Lin, Florian Reisinger, Oliver Hofmann, Michael Lawley, Laurence O. W. Wilson, Natalie A. Twine, Denis C. Bauer
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AI-Augmented Physics-Based Docking for Antibody-Antigen Complex Prediction. MR.RGM: An R Package for Fitting Bayesian Multivariate Bidirectional Mendelian Randomization Networks. Topology-based metrics for finding the optimal sparsity in gene regulatory network inference. Clustering individuals using INMTD: a novel versatile multi-view embedding framework integrating omics and imaging data. CytoSimplex: Visualizing Single-cell Fates and Transitions on a Simplex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1