Yanan Wang, Zengyi Zhang, Zhimeng Zhang, Xiaoying Chen, Junfeng Liu, Ming Liu
{"title":"Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis.","authors":"Yanan Wang, Zengyi Zhang, Zhimeng Zhang, Xiaoying Chen, Junfeng Liu, Ming Liu","doi":"10.1186/s13643-025-02771-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying patients at high risks remains challenging. Although numerous prediction models have been developed for HT following thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their development, validation, and diagnostic accuracy.</p><p><strong>Methods: </strong>PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were externally validated at least twice and showed low risk of bias were meta-analysed.</p><p><strong>Results: </strong>A total of 100 studies were included, with 67 focusing on model development and 33 on model validation. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies focused on machine learning prediction models (with support vector machines being the most common algorithm, used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve of approximately 0.70 for predicting HT.</p><p><strong>Conclusion: </strong>While significant progress has been made in developing HT prediction models, both traditional and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts across research groups are essential for validating these models in diverse populations and improving their broader applicability in clinical practice.</p><p><strong>Systematic review registration: </strong>International Prospective Register of Systematic Reviews (CRD42022332816).</p>","PeriodicalId":22162,"journal":{"name":"Systematic Reviews","volume":"14 1","pages":"46"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13643-025-02771-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying patients at high risks remains challenging. Although numerous prediction models have been developed for HT following thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their development, validation, and diagnostic accuracy.
Methods: PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were externally validated at least twice and showed low risk of bias were meta-analysed.
Results: A total of 100 studies were included, with 67 focusing on model development and 33 on model validation. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies focused on machine learning prediction models (with support vector machines being the most common algorithm, used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve of approximately 0.70 for predicting HT.
Conclusion: While significant progress has been made in developing HT prediction models, both traditional and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts across research groups are essential for validating these models in diverse populations and improving their broader applicability in clinical practice.
Systematic review registration: International Prospective Register of Systematic Reviews (CRD42022332816).
期刊介绍:
Systematic Reviews encompasses all aspects of the design, conduct and reporting of systematic reviews. The journal publishes high quality systematic review products including systematic review protocols, systematic reviews related to a very broad definition of health, rapid reviews, updates of already completed systematic reviews, and methods research related to the science of systematic reviews, such as decision modelling. At this time Systematic Reviews does not accept reviews of in vitro studies. The journal also aims to ensure that the results of all well-conducted systematic reviews are published, regardless of their outcome.