Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis.

IF 6.3 4区 医学 Q1 MEDICINE, GENERAL & INTERNAL Systematic Reviews Pub Date : 2025-02-22 DOI:10.1186/s13643-025-02771-w
Yanan Wang, Zengyi Zhang, Zhimeng Zhang, Xiaoying Chen, Junfeng Liu, Ming Liu
{"title":"Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis.","authors":"Yanan Wang, Zengyi Zhang, Zhimeng Zhang, Xiaoying Chen, Junfeng Liu, Ming Liu","doi":"10.1186/s13643-025-02771-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying patients at high risks remains challenging. Although numerous prediction models have been developed for HT following thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their development, validation, and diagnostic accuracy.</p><p><strong>Methods: </strong>PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were externally validated at least twice and showed low risk of bias were meta-analysed.</p><p><strong>Results: </strong>A total of 100 studies were included, with 67 focusing on model development and 33 on model validation. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies focused on machine learning prediction models (with support vector machines being the most common algorithm, used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve of approximately 0.70 for predicting HT.</p><p><strong>Conclusion: </strong>While significant progress has been made in developing HT prediction models, both traditional and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts across research groups are essential for validating these models in diverse populations and improving their broader applicability in clinical practice.</p><p><strong>Systematic review registration: </strong>International Prospective Register of Systematic Reviews (CRD42022332816).</p>","PeriodicalId":22162,"journal":{"name":"Systematic Reviews","volume":"14 1","pages":"46"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13643-025-02771-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, GENERAL & INTERNAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying patients at high risks remains challenging. Although numerous prediction models have been developed for HT following thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their development, validation, and diagnostic accuracy.

Methods: PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were externally validated at least twice and showed low risk of bias were meta-analysed.

Results: A total of 100 studies were included, with 67 focusing on model development and 33 on model validation. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies focused on machine learning prediction models (with support vector machines being the most common algorithm, used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve of approximately 0.70 for predicting HT.

Conclusion: While significant progress has been made in developing HT prediction models, both traditional and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts across research groups are essential for validating these models in diverse populations and improving their broader applicability in clinical practice.

Systematic review registration: International Prospective Register of Systematic Reviews (CRD42022332816).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Systematic Reviews
Systematic Reviews Medicine-Medicine (miscellaneous)
CiteScore
8.30
自引率
0.00%
发文量
241
审稿时长
11 weeks
期刊介绍: Systematic Reviews encompasses all aspects of the design, conduct and reporting of systematic reviews. The journal publishes high quality systematic review products including systematic review protocols, systematic reviews related to a very broad definition of health, rapid reviews, updates of already completed systematic reviews, and methods research related to the science of systematic reviews, such as decision modelling. At this time Systematic Reviews does not accept reviews of in vitro studies. The journal also aims to ensure that the results of all well-conducted systematic reviews are published, regardless of their outcome.
期刊最新文献
Traditional and machine learning models for predicting haemorrhagic transformation in ischaemic stroke: a systematic review and meta-analysis. An evidence mapping study based on systematic reviews of traditional Chinese medicine (TCM) for diabetic retinopathy. Safety and effectiveness of inhaled sedation in critically ill patients: a systematic review and meta-analysis. Physical exercise therapy for chronic non-specific neck pain: protocol for a meta-analysis of individual participant data. Attention-deficit/hyperactivity disorder and post-traumatic stress disorder adult comorbidity: a systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1