Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients.

N Khranovska, O Gorbach, O Skachkova, G Klimnyuk
{"title":"Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients.","authors":"N Khranovska, O Gorbach, O Skachkova, G Klimnyuk","doi":"10.15407/exp-oncology.2024.04.295","DOIUrl":null,"url":null,"abstract":"<p><p>All cancers are diseases of the genome, since the cancer cell genome typically consists of 10,000s of passenger alterations, 5-10 biologically relevant alterations, and 1-2 \"actionable\" alterations. Therefore, somatic mutations in cancer cells can have diagnostic, prognostic, and predictive value. Traditional methods are widely used for testing, such as immunohistochemistry, Sanger sequencing, and allele-specific PCR. However, due to the low throughput, these methods are focused exclusively on testing the most common mutations in target genes. The modern next generation sequencing (NGS) is a technology that enables precision oncology in its current form. ESCAT and ESMO Guidelines defined NGS for routine use in patients with advanced cancers such as non-squamous non-small cell lung cancer, prostate cancer, ovarian cancer, and cholangiocarcinoma. The high sensitivity of the NGS method allows it to be used to search for specific mutations in circulating tumor DNA in blood plasma and other body fluids. NGS testing has evolved from hotspot panels, actionable gene panels, and disease-specific panels to more comprehensive panels. The exome and whole genome sequencing approaches are just beginning to emerge, that is why panel-based testing remains most optimal in oncology practice. NGS is also widely used to identify new and rare mutations in cancer genes and detect inherited cancer mutations.</p>","PeriodicalId":94318,"journal":{"name":"Experimental oncology","volume":"46 4","pages":"295-304"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/exp-oncology.2024.04.295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All cancers are diseases of the genome, since the cancer cell genome typically consists of 10,000s of passenger alterations, 5-10 biologically relevant alterations, and 1-2 "actionable" alterations. Therefore, somatic mutations in cancer cells can have diagnostic, prognostic, and predictive value. Traditional methods are widely used for testing, such as immunohistochemistry, Sanger sequencing, and allele-specific PCR. However, due to the low throughput, these methods are focused exclusively on testing the most common mutations in target genes. The modern next generation sequencing (NGS) is a technology that enables precision oncology in its current form. ESCAT and ESMO Guidelines defined NGS for routine use in patients with advanced cancers such as non-squamous non-small cell lung cancer, prostate cancer, ovarian cancer, and cholangiocarcinoma. The high sensitivity of the NGS method allows it to be used to search for specific mutations in circulating tumor DNA in blood plasma and other body fluids. NGS testing has evolved from hotspot panels, actionable gene panels, and disease-specific panels to more comprehensive panels. The exome and whole genome sequencing approaches are just beginning to emerge, that is why panel-based testing remains most optimal in oncology practice. NGS is also widely used to identify new and rare mutations in cancer genes and detect inherited cancer mutations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of the Conference «Assessment of Quality of Life in Cancer Patients Covered in Experimental and Clinical Oncology Publications: Challenges and Opportunities», October 3-4, 2024, Kyiv, Ukraine. Assessment of Quality of Life in Cancer Patients: Challenges and Opportunities. Application of Next-Generation Sequencing to Realize Principles of Precision Therapy in Management of Cancer Patients. Concerning Modern System Biology Materials Discussed at the Scientific Conference «Assessment of Quality of Life in Cancer Patients Covered in Experimental and Clinical Oncology Publications: Challenges and Opportunities», October 3-4, 2024, Kyiv, Ukraine. Cystectomy in Metastatic Bladder Cancer: Feasibility, Safety and Outcomes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1