Generation of three-dimensional cluster entangled state

IF 32.9 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2025-02-24 DOI:10.1038/s41566-025-01631-2
Chan Roh, Geunhee Gwak, Young-Do Yoon, Young-Sik Ra
{"title":"Generation of three-dimensional cluster entangled state","authors":"Chan Roh, Geunhee Gwak, Young-Do Yoon, Young-Sik Ra","doi":"10.1038/s41566-025-01631-2","DOIUrl":null,"url":null,"abstract":"Measurement-based quantum computing is a promising paradigm of quantum computation, in which universal computing is achieved through a sequence of local measurements. The backbone of this approach is the preparation of multipartite entanglement, known as cluster states. Although a cluster state with two-dimensional connectivity is required for universality, a three-dimensional cluster state is necessary for additionally achieving fault tolerance. However, the challenge of making three-dimensional connectivity has limited cluster state generation capability up to two dimensions. Here we demonstrate the deterministic generation of a three-dimensional cluster state based on the photonic continuous-variable platform. To realize three-dimensional connectivity, we harness a crucial advantage of time–frequency modes of ultrafast quantum light: an arbitrary complex mode basis can be accessed directly, enabling connectivity as desired. We demonstrate the versatility of our method by generating cluster states with one-, two- and three-dimensional connectivities. For their complete characterization, we develop a quantum state tomography method for multimode Gaussian states. Moreover, we verify the cluster state generation by nullifier measurements as well as full inseparability tests. Our work paves the way towards fault-tolerant and universal-measurement-based quantum computing. Cluster states with three-dimensional connectivities are realized by selecting specific time–frequency mode bases for multimode quantum light. The cluster state generation is verified by nullifier measurements as well as full inseparability tests across all possible bipartitions.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 5","pages":"526-532"},"PeriodicalIF":32.9000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-025-01631-2","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Measurement-based quantum computing is a promising paradigm of quantum computation, in which universal computing is achieved through a sequence of local measurements. The backbone of this approach is the preparation of multipartite entanglement, known as cluster states. Although a cluster state with two-dimensional connectivity is required for universality, a three-dimensional cluster state is necessary for additionally achieving fault tolerance. However, the challenge of making three-dimensional connectivity has limited cluster state generation capability up to two dimensions. Here we demonstrate the deterministic generation of a three-dimensional cluster state based on the photonic continuous-variable platform. To realize three-dimensional connectivity, we harness a crucial advantage of time–frequency modes of ultrafast quantum light: an arbitrary complex mode basis can be accessed directly, enabling connectivity as desired. We demonstrate the versatility of our method by generating cluster states with one-, two- and three-dimensional connectivities. For their complete characterization, we develop a quantum state tomography method for multimode Gaussian states. Moreover, we verify the cluster state generation by nullifier measurements as well as full inseparability tests. Our work paves the way towards fault-tolerant and universal-measurement-based quantum computing. Cluster states with three-dimensional connectivities are realized by selecting specific time–frequency mode bases for multimode quantum light. The cluster state generation is verified by nullifier measurements as well as full inseparability tests across all possible bipartitions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维团簇纠缠态的产生
基于测量的量子计算是一种前景广阔的量子计算范式,它通过一系列局部测量来实现通用计算。这种方法的支柱是制备多方纠缠,即所谓的簇态。虽然普遍性需要具有二维连接性的簇态,但要额外实现容错,则需要三维簇态。然而,由于三维连通性的挑战,簇态的生成能力仅限于二维。在此,我们展示了基于光子连续可变平台的三维簇状态的确定性生成。为了实现三维连通性,我们利用了超快量子光的时频模式的一个关键优势:可以直接访问任意复杂的模式基础,从而实现所需的连通性。我们通过生成具有一维、二维和三维连通性的簇态,展示了我们方法的多功能性。为了全面描述它们,我们开发了一种多模高斯态的量子态层析成像方法。此外,我们还通过无效测量和完全不可分性测试验证了簇态的生成。我们的工作为实现基于容错和通用测量的量子计算铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
A high-speed heterogeneous lithium tantalate silicon photonics platform On-chip topological leaky-wave antenna for full-space terahertz wireless connectivity Encoding and manipulating ultrafast coherent valleytronic information with lightwaves Stable deep-blue organic light-emitting diodes based on sensitized fluorescence In-pixel colour correction with organic self-adaptive transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1