Marco Nurisso, Marta Morandini, Maxime Lucas, Francesco Vaccarino, Tommaso Gili, Giovanni Petri
{"title":"Higher-order Laplacian renormalization","authors":"Marco Nurisso, Marta Morandini, Maxime Lucas, Francesco Vaccarino, Tommaso Gili, Giovanni Petri","doi":"10.1038/s41567-025-02784-1","DOIUrl":null,"url":null,"abstract":"<p>The renormalization group is a pillar of the theory of scaling, scale invariance and universality in physics. Recently, this tool has been adapted to complex networks with pairwise interactions through a scheme based on diffusion dynamics. However, as the importance of polyadic interactions in complex systems becomes more evident, there is a pressing need to extend the renormalization group methods to higher-order networks. Here we fill this gap and propose a Laplacian renormalization group scheme for arbitrary higher-order networks. At the heart of our approach is the introduction of cross-order Laplacians, which generalize existing higher-order Laplacians by allowing the description of diffusion processes that can happen on hyperedges of any order via hyperedges of any other order. This approach enables us to probe higher-order structures, define scale invariance at various orders and propose a coarse-graining scheme. We validate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"67 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-025-02784-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The renormalization group is a pillar of the theory of scaling, scale invariance and universality in physics. Recently, this tool has been adapted to complex networks with pairwise interactions through a scheme based on diffusion dynamics. However, as the importance of polyadic interactions in complex systems becomes more evident, there is a pressing need to extend the renormalization group methods to higher-order networks. Here we fill this gap and propose a Laplacian renormalization group scheme for arbitrary higher-order networks. At the heart of our approach is the introduction of cross-order Laplacians, which generalize existing higher-order Laplacians by allowing the description of diffusion processes that can happen on hyperedges of any order via hyperedges of any other order. This approach enables us to probe higher-order structures, define scale invariance at various orders and propose a coarse-graining scheme. We validate our approach on controlled synthetic higher-order systems and then use it to detect the presence of order-specific scale-invariant profiles of real-world complex systems from multiple domains.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.