Francesco Bruno, Letizia Fiorucci, Alessia Vignoli, Klas Meyer, Michael Maiwald, Enrico Ravera
{"title":"pyIHM: Indirect Hard Modeling, in Python","authors":"Francesco Bruno, Letizia Fiorucci, Alessia Vignoli, Klas Meyer, Michael Maiwald, Enrico Ravera","doi":"10.1021/acs.analchem.4c06484","DOIUrl":null,"url":null,"abstract":"NMR is a powerful analytical technique that combines an exquisite qualitative power, related to the unicity of the spectra of each molecule in a mixture, with an intrinsic quantitativeness, related to the fact that the integral of each peak only depends on the number of nuclei (i.e., the amount of substance times the number of equivalent nuclei in the signal), regardless of the molecule. Signal integration is the most common approach in quantitative NMR but has several drawbacks (vide infra). An alternative is to use hard modeling of the peaks. In this paper, we present pyIHM, a Python package for the quantification of the components of NMR spectra through indirect hard modeling, and we discuss some numerical details of the implementation that make this approach robust and reliable.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06484","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
NMR is a powerful analytical technique that combines an exquisite qualitative power, related to the unicity of the spectra of each molecule in a mixture, with an intrinsic quantitativeness, related to the fact that the integral of each peak only depends on the number of nuclei (i.e., the amount of substance times the number of equivalent nuclei in the signal), regardless of the molecule. Signal integration is the most common approach in quantitative NMR but has several drawbacks (vide infra). An alternative is to use hard modeling of the peaks. In this paper, we present pyIHM, a Python package for the quantification of the components of NMR spectra through indirect hard modeling, and we discuss some numerical details of the implementation that make this approach robust and reliable.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.