Recent advances in the electrochemiluminescence detection of small molecule drugs

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL Analyst Pub Date : 2025-02-24 DOI:10.1039/d4an01562b
Jiali Li, Xinni Yao, Jiateng Ma, Chuang Liu, Wenjun Hong, Haigang Wu, Minjie Li, Liang-Hong Guo
{"title":"Recent advances in the electrochemiluminescence detection of small molecule drugs","authors":"Jiali Li, Xinni Yao, Jiateng Ma, Chuang Liu, Wenjun Hong, Haigang Wu, Minjie Li, Liang-Hong Guo","doi":"10.1039/d4an01562b","DOIUrl":null,"url":null,"abstract":"The detection of small molecule drugs is crucial in clinical treatment and environmental protection by facilitating the optimization of therapeutic regimens, preventing adverse drug reactions and monitoring environmental pollution. Electrochemiluminescence (ECL) is widely employed in the detection of small molecule drugs due to its high sensitivity and low background signal. This review highlights advancements from the last five years or so in ECL detection methods based on ECL reactions between luminophores and drugs as well as those based on affinity reactions between recognition molecules and drugs. Studies on affinity-based sensors including immunosensors, aptamer sensors, molecularly imprinted sensors, and composite material sensors are summarized. The review reveals that innovations in ECL luminophores, electrode materials and recognition materials are key areas of focus in this field. Nanomaterials play fundamentally important roles in enhancing the performance of ECL detection by acting as carriers of conventional luminophores, highly efficient luminescent materials, catalytically active electrode materials, and selective and stable recognition elements. With further advances in multiple drug detection, instrument miniaturization, on-site and point of care detection, and therapeutic monitoring, ECL is expected to play more significant roles in the detection of small molecule drugs.","PeriodicalId":63,"journal":{"name":"Analyst","volume":"48 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analyst","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4an01562b","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The detection of small molecule drugs is crucial in clinical treatment and environmental protection by facilitating the optimization of therapeutic regimens, preventing adverse drug reactions and monitoring environmental pollution. Electrochemiluminescence (ECL) is widely employed in the detection of small molecule drugs due to its high sensitivity and low background signal. This review highlights advancements from the last five years or so in ECL detection methods based on ECL reactions between luminophores and drugs as well as those based on affinity reactions between recognition molecules and drugs. Studies on affinity-based sensors including immunosensors, aptamer sensors, molecularly imprinted sensors, and composite material sensors are summarized. The review reveals that innovations in ECL luminophores, electrode materials and recognition materials are key areas of focus in this field. Nanomaterials play fundamentally important roles in enhancing the performance of ECL detection by acting as carriers of conventional luminophores, highly efficient luminescent materials, catalytically active electrode materials, and selective and stable recognition elements. With further advances in multiple drug detection, instrument miniaturization, on-site and point of care detection, and therapeutic monitoring, ECL is expected to play more significant roles in the detection of small molecule drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analyst
Analyst 化学-分析化学
CiteScore
7.80
自引率
4.80%
发文量
636
审稿时长
1.9 months
期刊介绍: "Analyst" journal is the home of premier fundamental discoveries, inventions and applications in the analytical and bioanalytical sciences.
期刊最新文献
Elucidating Gas Phase Microstructures of Therapeutic Deep Eutectic System Back cover A steam-mediated isothermal amplification and flocculation-based detection platform for electricity-free point of care diagnostics Recent advances in the electrochemiluminescence detection of small molecule drugs A robust signal processing program for nanopore signals by dynamic correction threshold with compatible baseline fluctuations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1