Małgorzata Lobka, Izabela Siekierska, Piotr Chyży, Michał Burmistrz, Julia Macyszyn, Renata Grzela, Monika Wojciechowska, Joanna Trylska
{"title":"Design, synthesis and evaluation of lysine- and leucine-rich hydrocarbon-stapled peptides as antibacterial agents","authors":"Małgorzata Lobka, Izabela Siekierska, Piotr Chyży, Michał Burmistrz, Julia Macyszyn, Renata Grzela, Monika Wojciechowska, Joanna Trylska","doi":"10.1016/j.ejmech.2025.117445","DOIUrl":null,"url":null,"abstract":"To address the challenge of antimicrobial resistance, we investigated new antibacterial peptides based on lysine- and leucine-rich sequences. We stabilised their membrane-active secondary structures by applying hydrocarbon stapling at sequence positions <em>i</em> and <em>i</em>+4. Stapling improved peptide structural stability in both aqueous and lipid environments, regardless of the staple position. It also enhanced antibacterial efficiency against both gram-negative and gram-positive bacteria, including antibiotic-resistant strains, with minimum inhibitory concentrations (MICs) of 2 to 4 μM (2.5 to 5.5 μg/mL). The stapled peptides showed increased resistance to enzymatic degradation, particularly with staples incorporated near the N-terminus, and were not haemolytic or cytotoxic at their MICs. Molecular dynamics simulations revealed how stapling aids in (i) stabilising the membrane-active secondary structure of amphipathic peptides and (ii) accelerating their membrane insertion. Our results provide insight into peptide design for antimicrobial use. We show that hydrocarbon stapling of lysine- and leucine-rich short sequences may offer a pathway towards more stable and effective antibacterial agents.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"50 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117445","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
To address the challenge of antimicrobial resistance, we investigated new antibacterial peptides based on lysine- and leucine-rich sequences. We stabilised their membrane-active secondary structures by applying hydrocarbon stapling at sequence positions i and i+4. Stapling improved peptide structural stability in both aqueous and lipid environments, regardless of the staple position. It also enhanced antibacterial efficiency against both gram-negative and gram-positive bacteria, including antibiotic-resistant strains, with minimum inhibitory concentrations (MICs) of 2 to 4 μM (2.5 to 5.5 μg/mL). The stapled peptides showed increased resistance to enzymatic degradation, particularly with staples incorporated near the N-terminus, and were not haemolytic or cytotoxic at their MICs. Molecular dynamics simulations revealed how stapling aids in (i) stabilising the membrane-active secondary structure of amphipathic peptides and (ii) accelerating their membrane insertion. Our results provide insight into peptide design for antimicrobial use. We show that hydrocarbon stapling of lysine- and leucine-rich short sequences may offer a pathway towards more stable and effective antibacterial agents.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.