A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL European Journal of Medicinal Chemistry Pub Date : 2025-03-03 DOI:10.1016/j.ejmech.2025.117472
Sri Mounika Bellapukonda, Rani Bandela, Anuradha Singampalli, Danaboina Srikanth, Pardeep Kumar, Srinivas Nanduri, Venkata Madhavi Yaddanapudi
{"title":"A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives","authors":"Sri Mounika Bellapukonda, Rani Bandela, Anuradha Singampalli, Danaboina Srikanth, Pardeep Kumar, Srinivas Nanduri, Venkata Madhavi Yaddanapudi","doi":"10.1016/j.ejmech.2025.117472","DOIUrl":null,"url":null,"abstract":"Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It’s simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015-2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"90 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anti-microbial resistance has become a serious global health issue affecting millions of people worldwide. Despite extensive drug discovery efforts aimed at identifying potent molecules for effective anti-microbial treatments, the emergence of superbugs remains a significant challenge. Thus, developing novel therapeutic agents is required to combat these evolving threats. The quinoxaline scaffold emerges as a promising heterocyclic framework for developing novel anti-microbial agents. It’s simple, flexible structure, coupled with its bioisosteric relationship to extensively explored quinoline and naphthalene scaffolds, offers a potential avenue for circumventing bacterial resistance developed against these established classes. Hence it has sparked interest in researchers to develop novel antibiotics based on the quinoxaline core. This review focuses on the recent advances of quinoxaline derivatives as anti-microbial agents and their structure-activity relationship studies based on the literature published from 2015-2024. The systematic presentation of this information will assist researchers in identifying key substitution patterns around the quinoxaline nucleus, facilitating the development of structure-activity relationship (SAR), and guiding the design of novel anti-microbial drugs to combat the growing threat of anti-microbial resistance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
期刊最新文献
A systematic review on the anti-microbial activities and structure-activity relationship (SAR) of quinoxaline derivatives Synthesis and bioactivity of cyclic peptide GG-8-6 analogues as anti-hepatocellular carcinoma agents Epigenetic Targets and Their Inhibitors in the Treatment of Idiopathic Pulmonary Fibrosis Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy Corrigendum to “Ultra-short lipopeptides containing d-amino acid exhibiting excellent stability and antibacterial activity against Gram-positive bacteria” [Europ. J. Med. Chem. 287 (2025) 117341]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1