Sub-nm kinetically controlled liquid metal printing of ternary antimony indium oxide transistors

IF 17.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Matter Pub Date : 2025-04-02 DOI:10.1016/j.matt.2025.102003
Samuel W. Ong , Simon A. Agnew , Md Saifur Rahman , William J. Scheideler
{"title":"Sub-nm kinetically controlled liquid metal printing of ternary antimony indium oxide transistors","authors":"Samuel W. Ong ,&nbsp;Simon A. Agnew ,&nbsp;Md Saifur Rahman ,&nbsp;William J. Scheideler","doi":"10.1016/j.matt.2025.102003","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional (2D) metal oxide semiconductors offer a superlative combination of high electron mobility and visible-range transparency uniquely suitable for flexible transparent electronics. Synthesis of these ultrathin (&lt;3 nm) semiconductors by Cabrera-Mott oxidation of liquid metals could enable emerging device applications but requires the precise design of their electrostatics at the nanoscale. This study demonstrates sub-nanometer-level control over the thickness of semiconducting 2D antimony-doped indium oxide (AIO) by manipulating the kinetics of Cabrera-Mott oxidation through variable-speed liquid metal printing at plastic-compatible temperatures (175°C). By modulating both the growth kinetics and doping, we engineer the conductivity and crystallinity of AIO for integration in ultrathin channel transistors exhibiting exceptional steep turn-on, on-off ratios &gt; 10<sup>6</sup> and an outstanding average mobility of 34.7 ± 12.9 cm<sup>2</sup>/Vs. This result shows the potential for <em>kinetically</em> controlling 2D oxide synthesis for various high-performance optoelectronic device applications.</div></div>","PeriodicalId":388,"journal":{"name":"Matter","volume":"8 4","pages":"Article 102003"},"PeriodicalIF":17.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590238525000463","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) metal oxide semiconductors offer a superlative combination of high electron mobility and visible-range transparency uniquely suitable for flexible transparent electronics. Synthesis of these ultrathin (<3 nm) semiconductors by Cabrera-Mott oxidation of liquid metals could enable emerging device applications but requires the precise design of their electrostatics at the nanoscale. This study demonstrates sub-nanometer-level control over the thickness of semiconducting 2D antimony-doped indium oxide (AIO) by manipulating the kinetics of Cabrera-Mott oxidation through variable-speed liquid metal printing at plastic-compatible temperatures (175°C). By modulating both the growth kinetics and doping, we engineer the conductivity and crystallinity of AIO for integration in ultrathin channel transistors exhibiting exceptional steep turn-on, on-off ratios > 106 and an outstanding average mobility of 34.7 ± 12.9 cm2/Vs. This result shows the potential for kinetically controlling 2D oxide synthesis for various high-performance optoelectronic device applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚纳米动态控制三元锑铟氧化物晶体管的液态金属印刷
二维(2D)金属氧化物半导体提供了高电子迁移率和可见光范围透明度的最佳组合,特别适用于柔性透明电子产品。通过液态金属的Cabrera-Mott氧化合成这些超薄(3nm)半导体可以实现新兴器件的应用,但需要在纳米尺度上精确设计其静电。本研究展示了在塑料兼容温度(175°C)下,通过变速液态金属印刷,通过操纵Cabrera-Mott氧化动力学,对半导体2D掺锑氧化铟(AIO)的厚度进行亚纳米级控制。通过调节生长动力学和掺杂,我们设计了AIO的电导率和结晶度,用于集成在超薄通道晶体管中,具有异常陡峭的通断比和gt;106,平均迁移率为34.7±12.9 cm2/Vs。这一结果显示了在各种高性能光电器件应用中动态控制二维氧化物合成的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Matter
Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
26.30
自引率
2.60%
发文量
367
期刊介绍: Matter, a monthly journal affiliated with Cell, spans the broad field of materials science from nano to macro levels,covering fundamentals to applications. Embracing groundbreaking technologies,it includes full-length research articles,reviews, perspectives,previews, opinions, personnel stories, and general editorial content. Matter aims to be the primary resource for researchers in academia and industry, inspiring the next generation of materials scientists.
期刊最新文献
Sweat-activated conductive hydrogel nanomesh for breathable, long-term electrophysiological monitoring and human-centric interfaces Spatially confined synthesis of CsPbBr3 quantum dots for high-performance pure-blue light-emitting diodes Perturbing dynamics of active emulsions and their collectives Evolution from topological Dirac metal to flat-band-induced antiferromagnet in layered KxNi4S2 (0 ≤ x ≤ 1) High-mobility PbSe crystals with trace Sb doping for wide-temperature thermoelectric applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1