Impacts of the local temperature anomalies over Mongolian Plateau on heavy rainfall events in north China during July 2023

IF 6.1 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Weather and Climate Extremes Pub Date : 2025-02-20 DOI:10.1016/j.wace.2025.100758
Yunchang Cao , Ling Zhang , Haijun Zhao , Zhun Guo
{"title":"Impacts of the local temperature anomalies over Mongolian Plateau on heavy rainfall events in north China during July 2023","authors":"Yunchang Cao ,&nbsp;Ling Zhang ,&nbsp;Haijun Zhao ,&nbsp;Zhun Guo","doi":"10.1016/j.wace.2025.100758","DOIUrl":null,"url":null,"abstract":"<div><div>From July 29th to August 2nd, 2023, an exceptional precipitation event, referred as 237HRE, struck North China, causing widespread flooding in the Haihe River basin. Utilizing reanalysis data and the Weather Research and Forecasting (WRF) model, this study delves into the reasons behind the unusual westward extension and northward shift of the Western Pacific Subtropical High (WPSH), as well as the extreme precipitation during 237HRE. Our findings indicate that during 237HRE, the WPSH underwent a significant anomalous westward extension and northward shift, forming a stable and enduring high-pressure barrier. This barrier caused the typhoon's residual vortex and water vapor transport to stagnate in North China, thereby creating the conditions for this extreme precipitation event.</div><div>The diagnostics reveal that the positive temperature anomaly over the Mongolian Plateau intensified local temperature advection, contributing to the enhancement and northwestward extension of the WPSH. This mechanism has been thoroughly validated using the Interactive Global Grand Ensemble (TIGGE) dataset, that better forecasts of 237HRE usually benefited from better forecasts of the WPSH. Additionally, WRF sensitivity experiments further support this mechanism, demonstrating that when the positive temperature anomalies are weakened, the WPSH retreats eastward and weakens considerably, as well as the extreme event. In particular, the typhoon residual vortex moves to the southeast at an increased speed with the influence of steering currents. Under these atmospheric circulation configurations, the moisture transport pathway also shifts eastward, altering its relative relationship with the Taihang Mountains, leading to rainfall patterns expanding eastward and the intensity weakening in North China. These findings highlight the crucial role of local temperature anomalies over Mongolia in modulating the position of WPSH, which is essential for understanding and predicting the extreme precipitation events in North China.</div></div>","PeriodicalId":48630,"journal":{"name":"Weather and Climate Extremes","volume":"48 ","pages":"Article 100758"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weather and Climate Extremes","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212094725000167","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

From July 29th to August 2nd, 2023, an exceptional precipitation event, referred as 237HRE, struck North China, causing widespread flooding in the Haihe River basin. Utilizing reanalysis data and the Weather Research and Forecasting (WRF) model, this study delves into the reasons behind the unusual westward extension and northward shift of the Western Pacific Subtropical High (WPSH), as well as the extreme precipitation during 237HRE. Our findings indicate that during 237HRE, the WPSH underwent a significant anomalous westward extension and northward shift, forming a stable and enduring high-pressure barrier. This barrier caused the typhoon's residual vortex and water vapor transport to stagnate in North China, thereby creating the conditions for this extreme precipitation event.
The diagnostics reveal that the positive temperature anomaly over the Mongolian Plateau intensified local temperature advection, contributing to the enhancement and northwestward extension of the WPSH. This mechanism has been thoroughly validated using the Interactive Global Grand Ensemble (TIGGE) dataset, that better forecasts of 237HRE usually benefited from better forecasts of the WPSH. Additionally, WRF sensitivity experiments further support this mechanism, demonstrating that when the positive temperature anomalies are weakened, the WPSH retreats eastward and weakens considerably, as well as the extreme event. In particular, the typhoon residual vortex moves to the southeast at an increased speed with the influence of steering currents. Under these atmospheric circulation configurations, the moisture transport pathway also shifts eastward, altering its relative relationship with the Taihang Mountains, leading to rainfall patterns expanding eastward and the intensity weakening in North China. These findings highlight the crucial role of local temperature anomalies over Mongolia in modulating the position of WPSH, which is essential for understanding and predicting the extreme precipitation events in North China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Weather and Climate Extremes
Weather and Climate Extremes Earth and Planetary Sciences-Atmospheric Science
CiteScore
11.00
自引率
7.50%
发文量
102
审稿时长
33 weeks
期刊介绍: Weather and Climate Extremes Target Audience: Academics Decision makers International development agencies Non-governmental organizations (NGOs) Civil society Focus Areas: Research in weather and climate extremes Monitoring and early warning systems Assessment of vulnerability and impacts Developing and implementing intervention policies Effective risk management and adaptation practices Engagement of local communities in adopting coping strategies Information and communication strategies tailored to local and regional needs and circumstances
期刊最新文献
Corrigendum to “Mid-century climate change impacts on tornado-producing tropical cyclones” [Weather Clim. Extr. 44 (2024) 100684] Impact of urbanization on regional extreme precipitation trends observed at China national station network Interannual variability of moisture sources and isotopic composition of Meiyu-Baiu rainfall in southwestern Japan: Importance of Asian monsoon moisture for extreme rainfall events Regional drivers and characteristics of multi-year droughts Assessment of the marine heatwaves prediction performance of the short-term climate prediction system FIO-CPS v2.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1